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bias and variance remains in the asymptotic theory. We then propose a focused information

criterion and a plug-in averaging estimator for large heterogeneous panels and examine their

theoretical properties. The novel feature of the proposed method is that it aims to minimize the
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1 Introduction

Panel data models are widely used in economic and statistical research. In the past decade, there

has been increasing interest in the study of cross-sectional dependence in panel data models. One

popular approach to this problem is the common correlated effects (CCE) approach proposed

by Pesaran (2006). The virtue of CCE estimation is that it can be easily computed by least

squares regression augmented with cross-sectional averages of the dependent variable and individual

regressors. While the asymptotic properties of CCE estimators have been investigated, little work

has considered CCE estimation under model uncertainty.

This paper considers model selection and model averaging in panel data models with a multifac-

tor error structure. Following Hjort and Claeskens (2003), Hansen (2014), and Liu (2015), we study

the asymptotic distribution of the mean group estimator based on the individual-specific CCE esti-

mators in a local asymptotic framework where the cross-sectional means of slope coefficients are in

a local neighborhood of zero. It is well known that adding more regressors reduces the model bias

but causes a large variance in the finite sample. The local asymptotic framework has an advantage

of yielding the same stochastic order of squared biases and variances. Thus, the asymptotic mean

squared error (AMSE) of the common correlated effects mean group (CCEMG) estimators for all

submodels remains finite and provides a good approximation to finite sample mean squared error.

One attractive advantage of CCEMG estimation is that the rank condition is not necessary for

employing the CCEMG estimator. We first consider a general case where the rank condition is

not satisfied for all submodels. Under drifting sequences of parameters, we derive the asymptotic

distributions of submodel estimators and show that the trade-off between bias and variance remains

in the asymptotic theory. In addition to the bias-variance trade-off, we find that adding more

regressors could have positive or negative effects on estimation variance. While, in general, adding

more regressors causes a larger variance, it could also affect the orthogonal projection matrix and

filter out more unobserved common factors. Hence, a bigger model may have a lower variance than

the smaller model.

Several degenerate cases are discussed, including the case where the rank condition is satisfied

for some submodels, the case where all submodels have no asymptotic bias, and the case where

the local to zero assumption is imposed on both the cross-sectional means of slope coefficients

and the random deviations. However, it is hard to distinguish between cases and to verify if the

rank condition holds or not in practice. Therefore, the results inferred from these asymptotic

distributions do not provide us a clear guideline to select the submodel in an empirical study. To

address this problem, we propose a focused information criterion (FIC) to select the model for large

heterogeneous panels. The proposed FIC aims to minimize the sample analog of AMSE for both

general and degenerate cases. We show that the proposed FIC is an asymptotic unbiased estimator

of the AMSE and can be applied to all cases.

Building on the idea of FIC, we introduce a frequentist model averaging criterion to select the

weights for candidate models and study its properties. We first derive the asymptotic distribution

of the averaging estimator with fixed weights, which allows us to characterize the AMSE of the
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averaging estimator. We then propose a criterion for weight selection and use these estimated

weights to construct a plug-in averaging estimator. Similar to the model selection, the proposed

model averaging criterion is an asymptotic unbiased estimate of the AMSE irrespective of whether

the rank condition holds or not. Simulation studies show that the proposed model selection and

averaging methods generally produce lower expected squared error as compared to other methods.

We now discuss the related literature. There is a large body of literature on large panels with

a multifactor error structure. The two main approaches to factor-augmented panel regressions are

correlated common effects estimators and interactive effects estimators. The correlated common ef-

fects estimator based on cross-sectional averages has been developed by Pesaran (2006), Kapetanios,

Pesaran, and Yamagata (2011), Pesaran and Tosetti (2011), Chudik, Pesaran, and Tosetti (2011),

Pesaran, Smith, and Yamagata (2013), Chudik and Pesaran (2015), and Karabiyik, Reese, and

Westerlund (2016), while the interactive effects estimator based on principal components has been

developed by Stock and Watson (2002), Bai and Ng (2002), Bai (2009), Moon and Weidner (2015a),

and Moon and Weidner (2015b); see Kapetanios and Pesaran (2007) and Westerlund and Urbain

(2015) for a comparison of these two approaches.

The focused information criterion is introduced by Claeskens and Hjort (2003) for likelihood-

based models. In recent years, FIC has been extended to several models, including the Cox hazard

regression model (Hjort and Claeskens, 2006), the general semiparametric model (Claeskens and

Carroll, 2007), the generalized additive partial linear model (Zhang and Liang, 2011), the Tobin

model with a nonzero threshold (Zhang, Wan, and Zhou, 2012), generalized empirical likelihood es-

timation (Sueishi, 2013), generalized method of moments estimation (DiTraglia, 2016), and propen-

sity score weighted estimation of the treatment effects (Lu, 2015; Kitagawa and Muris, 2016). In

this paper, we extend the existing literature on FIC to panel data models in the presence of a

multifactor error structure.

There is a growing body of literature on frequentist model averaging, including information

criterion weighting (Buckland, Burnham, and Augustin, 1997; Hjort and Claeskens, 2003; Zhang

and Liang, 2011; Zhang, Wan, and Zhou, 2012), adaptive regression by mixing models (Yang, 2000,

2001; Yuan and Yang, 2005), Mallows’ Cp-type averaging (Hansen, 2007, 2009, 2010; Wan, Zhang,

and Zou, 2010; Liu and Okui, 2013; Zhang, Zou, and Liang, 2014), optimal mean squared error

averaging (Liang, Zou, Wan, and Zhang, 2011), jackknife model averaging (Hansen and Racine,

2012; Zhang, Wan, and Zou, 2013; Lu and Su, 2015), and plug-in averaging (Liu, 2015). However,

the existing literature on frequentist model averaging in factor-augmented regressions or panel data

models is comparatively small. Cheng and Hansen (2015) consider forecast combination based on

the Mallows and the leave-h-out cross validation criteria for factor-augmented regression models.

Paap, Wang, and Zhang (2015) propose an optimal pooling averaging estimator for heterogenous

panel data models. Gao, Zhang, Wang, and Zou (2016) propose a leave-subject-out model averaging

estimator for panel data models and demonstrate its asymptotic optimality. To our knowledge, the

averaging estimator has not been explored before in panel data models with a multifactor error

structure.

The rest of the paper is organized as follows. Section 2 presents the panel data model, the sub-
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model, and the common correlated effects estimator. Section 3 presents the asymptotic framework

and assumptions. Section 4 derives the focused information criterion. Section 5 introduces the

plug-in averaging estimator. Section 6 presents the results of Monte Carlo experiments. Section

7 presents the empirical application and Section 8 concludes the paper. Proofs are presented in

the Appendix. Throughout this paper, we employ the following symbols. For a k × k matrix A,

‖A‖ = (tr(A′A))1/2 denotes the Euclidean norm, and A− denotes its Moore-Penrose generalized

inverse. For an m× n matrix B = (bij), vec(B) = [b11, ..., bm1, . . . , b1n, . . . , bmn].

2 Model and Estimation

Suppose we have observations (yit,x1it,x2it) for i = 1, ..., N and t = 1, ..., T . We consider the

following panel data model with a multifactor error structure:

yit = x′
1itβ1i + x′

2itβ2i + eit, (2.1)

eit = γ ′
ift + εit, (2.2)

where x1it (k1×1) and x2it (k2×1) are vectors of regressors, β1i (k1×1) and β2i (k2×1) are vectors of

unknown coefficients, eit is an error with a multifactor structure, γi is an r×1 vector of unobserved

factor loadings, ft is an r×1 vector of unobserved common factors so that γ′
ift = γi1f1t+· · ·+γirfrt,

and εit is an unobserved idiosyncratic error. Here, x1it contain the core regressors that must be

included in the model based on theoretical grounds, while x2it contain the auxiliary regressors that

may or may not be included in the model. The core regressors may only include a constant term

or even an empty matrix, and the auxiliary regressors can include any nonlinear transformations

of the original variables and the interaction terms between the regressors. Let βi = (β′
1i,β

′
2i)

′ and

k = k1 + k2 be the total number of the regressors in the model (2.1).

This model includes the standard fixed-effects model as a special case when r = 1, ft = 1, and

βi = β for all i. It generalizes the fixed-effects model to allow the interactive-effects between γi

and ft. The setup is general enough to allow for the unobserved factors ft to be correlated with the

regressors x1it and x2it. To allow for this possibility, we follow Pesaran (2006) and assume that

x1it = Γ′
1ift + v1it, (2.3)

x2it = Γ′
2ift + v2it, (2.4)

where Γ1i and Γ2i are r × k1 and r × k2 factor loading matrices, and v1it and v2it are k1 × 1

and k2 × 1 idiosyncratic errors. Let vit = (v′
1it,v

′
2it)

′ and assume that vit follow general covariance

stationary processes. In general, v1it are correlated with v2it, i.e., Var(vit) is not a diagonal matrix.

Hence, the core regressors x1it are correlated with the auxiliary regressors x2it not only due to the

presence of the common factors ft, but also due to the correlation between v1it and v2it.

We now consider a set of M submodels indexed by m = 1, ...,M . Themth submodel includes all

core regressors x1it and 0 ≤ k2m ≤ k2 auxiliary regressors x2it. Themth submodel has km = k1+k2m

regressors, and we use xmit = (x′
1it,x

′
2itΠ

′
m)′ to denote the regressors included in themth submodel,
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where Πm is a k2m × k2 selection matrix that selects the included auxiliary regressors. We do not

place any restrictions on the model space. The set of models could be nested or non-nested. If

we consider a sequence of nested models, then M = k2 + 1. If we consider all possible subsets of

auxiliary regressors, then M = 2k2 .

Since the common factors ft enter equations (2.2)–(2.4) simultaneously, the estimation of the

slope coefficients is nontrivial. We follow Pesaran (2006) and estimate unknown slope coefficients

by common correlated effects (CCE) estimation. The idea behind the CCE approach is to use

the cross-sectional averages to approximate the linear combinations of the unobserved common

factors and then estimate slope coefficients by a standard panel regression augmented with these

cross-sectional averages.

Let Ik denote an identity matrix of order k and 0 a zero matrix. We first combine equations

(2.1)–(2.4) and write the full model as a system of equations

hit = C′
ift + uit, (2.5)

where hit = (yit,x
′
1it,x

′
2it)

′, uit = (εit + β′
ivit,v

′
1it,v

′
2it)

′, and

Ci =
[
γi Γ1i Γ2i

]



1 0 0

β1i Ik1 0

β2i 0 Ik2


 .

Similarly, for the submodel m, we have

hmit = C′
mift + umit, (2.6)

where hmit = (yit,x
′
1it,x

′
2itΠ

′
m)′, umit = (εit + β′

ivit,v
′
1it,v

′
2itΠ

′
m)′, and

Cmi =
[
γi + Γ2i(Ik2 −Π′

mΠm)β2i Γ1i Γ2iΠ
′
m

]



1 0 0

β1i Ik1 0

Πmβ2i 0 Ik2m


 .

Define Āt = N−1
∑N

i=1Ait as the cross-sectional average of any variable Ait. After taking the

cross-sectional averages of the equation (2.6), we have

h̄mt = C̄′
mft + ūmt, (2.7)

where h̄mt, C̄m, and ūmt are the cross-sectional averages of hmit, Cmi, and umit, respectively. This

equation motivates us to use the cross-sectional averages h̄mt as proxies for unobserved common

factors ft since ūmt
p−→ 0 as N → ∞ under regularity conditions. Thus, the slope coefficients βi

can be consistently estimated by least squares regression augmented with cross-sectional averages

of the dependent variable and individual regressors.

In matrix notation, we write the model (2.1)–(2.2) as

yi = X1iβ1i +X2iβ2i + Fγi + εi = Xiβi + Fγi + εi, (2.8)
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where yi = (yi1, ..., yiT )
′, Xi = (X1i,X2i), X1i = (x1i1, ...,x1iT )

′, X2i = (x2i1, ...,x2iT )
′, F =

(f1, ..., fT )
′, and εi = (εi1, ..., εiT )

′. Let H̄ = (ȳ, X̄1, X̄2) be the cross-sectional averages of the

dependent and independent variables, i.e., ȳ, X̄1, and X̄2 are the cross-sectional averages of yi,

X1i, and X2i, respectively.

The unconstrained CCE estimator of βi in the full model, i.e., with all auxiliary regressors

included in the model, is

β̂fi = (X′
iMhXi)

−1X′
iMhyi, (2.9)

Mh = IT − H̄(H̄′H̄)−H̄′, (2.10)

and the CCE estimator in the submodel m is

β̂mi = (X′
miMhmXmi)

−1X′
miMhmyi, (2.11)

Mhm = IT − H̄m(H̄′
mH̄m)−H̄′

m, (2.12)

where Xmi = (X1i,X2iΠ
′
m) and H̄m = (ȳ, X̄1, X̄2Π

′
m).

The model (2.8) allows the slope coefficients to be heterogeneous over i such that βi = β + ηi

with ηi being independent and identically distributed (i.i.d.). In this paper, the parameter of

interest is β, which is the cross-sectional mean of the unknown slope coefficient βi. The unknown

parameter β can be consistently estimated by a simple average of the individual CCE estimators,

that is, the common correlated effects mean group (CCEMG) estimator.1

The CCEMG estimator of β in the full model is

β̂MG,f =
1

N

N∑

i=1

β̂fi, (2.13)

and the CCEMG estimator in the submodel m is

β̂MG,m =
1

N

N∑

i=1

β̂mi. (2.14)

Remark 2.1. In Pesaran (2006), the cross-sectional average is defined by h̄t =
∑N

i=1 λihit with

the weights λi that satisfy the conditions: (1) λi = O(N−1), (2)
∑N

i=1 λi = 1, and (3)
∑N

i=1 |λi| <
C < ∞. Note that the choice of the weights does not affect the asymptotic distributions of CCE

and CCEMG estimators. As suggested by Pesaran (2006), one could use the equal weights when

the sample size is reasonably large. Thus, we consider λi = 1/N in this paper for simplicity.

Remark 2.2. For the CCE estimator in the submodel m, one may consider using all the cross-

sectional averages of the dependent and independent variables as proxies for unobserved common

factors, i.e., β̃mi = (X′
miMhXmi)

−1X′
miMhyi. Our simulations show that the averaging estimator

based on β̂mi has better finite sample performance than the averaging estimator based on β̃mi.

Thus, we do not consider β̃mi in our analysis.

1As an alternative CCEMG estimator for β, we may consider the common correlated effects pooled estimator

proposed by Pesaran (2006). However, to achieve consistency, we need to impose some restrictions on the pooling

weights when the rank condition is not satisfied. We therefore do not consider this method in this paper.
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3 Asymptotic Theory

In this section, we study the limiting distribution of the CCEMG estimator of β for the submodel

m. In the first subsection, we describe the asymptotic framework and technical assumptions. In the

second subsection, we present the asymptotic distribution of the CCEMG estimator in a general

case where the rank condition is not satisfied for all submodels. In the third subsection, we study

the asymptotic distribution of the CCEMG estimator in several degenerate cases. In the fourth

subsection, we provide a numerical comparison in a three-nested-model framework.

3.1 Assumptions

We now state the assumptions.

Assumption 3.1. The individual-specific errors εit and vjs are distributed independently for all

i, j, t, and s. For each i, εit and vit follow linear stationary processes with absolute summable

autocovariances,

εit =

∞∑

ℓ=0

aiℓζi,t−ℓ, E(εit) = 0, Var(εit) = σ2
i ≤ σ̄2 < ∞,

and

vit =

∞∑

ℓ=0

αiℓνi,t−ℓ, E(vit) = 0, Var(vit) = Σi ≤ Σ̄ < ∞,

where (ζit,ν
′
it)

′ are (k+1)×1 vectors of i.i.d. random variables with mean zero, identity covariance

matrix, and finite fourth-order cumulants, Σi is a positive definite matrix, and σ̄2 and Σ̄ are

constants.

Assumption 3.2. The vector of common factors ft is covariance stationary with absolute summable

autocovariances and distributed independently of the individual-specific errors εit and vis for all i,

t, and s.

Assumption 3.3. The factor loadings γi and Γi = (Γ1i,Γ2i) are i.i.d. across i with fixed means

γ and Γ, respectively, and finite variances, and distributed independently of εjt, vjt, and ft for all

i, j, and t. In particular, for i = 1, ..., N ,

γi = γ + ιi, ιi ∼ i.i.d.(0,Ωγ),

Γi = Γ+ ξi, vec(ξi) ∼ i.i.d.(0,ΩΓ),

where Γ = (Γ1,Γ2), ξi = (ξ1i, ξ2i), Ωγ and ΩΓ are symmetric nonnegative definite matrices, and

||Ωγ || and ||ΩΓ|| are bounded.

Assumption 3.4. The slope coefficients βi follow the random coefficient model

βi = β + ηi, ηi ∼ i.i.d.(0,Ωβ),
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where β = (β′
1,β

′
2)

′, ηi = (η′
1i,η

′
2i)

′, Ωβ is a symmetric nonnegative definite matrix, and ||Ωβ|| is
bounded. The random deviations ηi are distributed independently of γj , Γj, εjt, vjt, and ft for all

i, j, and t.

Assumption 3.5. Suppose that
√
N∆−1

NT → c < ∞ as N,T → ∞ jointly. The cross-sectional

means of β2i follow

β2 ≡ β2,NT = ∆−1
NTδ,

where δ is an unknown constant vector.

Assumption 3.6. Rank(C̄m) ≡ rm = r ≤ km + 1 for the mth model.

Assumption 3.1 specifies that the individual-specific errors are distributed independently and

imposes some moment conditions. Assumption 3.2 assumes that the common factors are covariance

stationary. Assumptions 3.3 and 3.4 impose the random coefficient structure on the factor loadings

and the slope coefficients. Assumptions 3.1–3.4 are similar to Assumptions 1–4 of Pesaran (2006).

Note that Assumption 3.4 implies that β1i = β1+η1i, η1i ∼ i.i.d.(0,Ωβ1
) where ||Ωβ1

|| is bounded.
Assumption 3.5 assumes that the cross-sectional means of β2i are local to zero. Under Assump-

tions 3.4–3.5, it is easy to see that E(β2i) = ∆−1
NTδ = β2 and β2i still follow the random coefficient

model. Note that Assumption 3.5 only imposes the local to zero assumption on the cross-sectional

means β2. It is possible to impose the local to zero assumption on both the cross-sectional means

β2 and the random deviations η2i. We will discuss this case in the subsection 3.3.

The local to zero assumption is a common technique to analyze the asymptotic and finite sample

properties of the model selection and averaging estimator, for example, Hjort and Claeskens (2003),

Leeb and Pötscher (2005), Claeskens and Hjort (2008), Hansen (2014), and Liu (2015). This

assumption is canonical in the sense that both squared bias and variance have the same order,

and it ensures that asymptotic mean squared error of the submodel estimator remains finite. The

assumption states that the partial correlations between the dependent variable and the auxiliary

regressors are weak for all i, and the partial correlations will vanish as N,T → ∞ jointly. Here

we do not specify the convergence rate of β2,NT but simply let β2,NT converge to zero under the

condition
√
N∆−1

NT → c as N and T increase. For example, if ∆NT = O(T ), then Assumption 3.5

holds when N = O(T 2).2

Assumption 3.6 is the rank condition, and it plays a crucial role in CCEMG estimation. Recall

that C̄m is a matrix of dimension r× (km+1), and Assumption 3.6 says that C̄m is full rank. This

assumption implies that the space spanned by the unknown common factors can be consistently

estimated using the cross-sectional averages, and hence it achieves efficiency gain when the rank

condition is satisfied. If the rank condition is not satisfied for the mth model, then we have

Rank(C̄m) ≡ rm < r. Assumption 3.6 corresponds to the rank condition (21) of Pesaran (2006).

2Unlike Hansen (2014), and Liu (2015), which assume ∆NT is equal to
√
N , we allow the rate of convergence in

a more general setting as long as the condition
√
N∆−1

NT → c is satisfied.
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3.2 General Case

In this subsection, we study the asymptotic distribution of the CCEMG estimator in a general

setting where the rank condition is not satisfied for all submodels. We first introduce some notation

that we will use to characterize the limiting distribution. Let βm = (β′
1,β

′
2Π

′
m)′ = (β′

1,β
′
2m)′ be

the cross-sectional means. Define Qmi = p lim
T→∞

(T−1X′
iMgmXi) and Σmi = p lim

T→∞
(T−1X′

iMgmF),

where Mgm = IT − Ḡm(Ḡ′
mḠm)−Ḡ′

m and Ḡm = FC̄m. Let

S0 =

[
0k1×k2

Ik2

]
and Sm =

[
Ik1 0k1×k2m

0k2×k1 Π′
m

]

be selection matrices of dimension k × k2 and k × (k1 + k2m), respectively.

Theorem 3.1. Suppose that Assumptions 3.1–3.5 hold. As N,T → ∞ jointly, we have

√
N(β̂MG,m − βm)

d−→ Amδc +Um +Vm ∼ N(Amδc,Ξm) ,

where δc = c · δ, Am = lim
N→∞

1
N

∑N
i=1RmiQmiS0(Ik2 − Π′

mΠm), Rmi = (S′
mQmiSm)−1

S′
m, and

Um and Vm are two stochastically independent normal random vectors. In particular,

Um ∼ N(0,Ξum) with Ξum = lim
N→∞

1

N

N∑

i=1

RmiQmiΩβQ
′
miR

′
mi,

Vm ∼ N(0,Ξvm) with Ξvm = lim
N→∞

1

N

N∑

i=1

RmiΣmiΩγΣ
′
miR

′
mi,

and Ξm = Ξum +Ξvm.

Theorem 3.1 presents the asymptotic normality of the CCEMG estimator for each submodel.

This result also implies that the submodel estimate β̂MG,m is consistent. Here Amδc represents the

asymptotic bias of submodel estimators and Ξm represents the asymptotic variance. For the full

model, it is easy to see that the asymptotic bias is zero since Ik2 −Π′
mΠm = 0. Furthermore, the

asymptotic distribution of the CCEMG estimator in the full model is

√
N(β̂MG,f − β)

d−→ Uf +Vf ∼ N (0,Ξf ) , (3.1)

Ξf = Ωβ + lim
N→∞

1

N

N∑

i=1

Q−1
fi ΣfiΩγΣ

′
fiQ

−1
fi , (3.2)

where Qfi = p lim
T→∞

(T−1X′
iMgXi), Σfi = p lim

T→∞
(T−1X′

iMgF), Mg = IT − Ḡ(Ḡ′Ḡ)−Ḡ′, and

Ḡ = FC̄. The asymptotic distribution of β̂MG,f presented in (3.1) and (3.2) corresponds to

Theorem 2 in Pesaran (2006).

Define Q̂mi = T−1X′
iMhmXi and Σ̂mi = T−1X′

iMhmF as the sample analogs of Qmi and Σmi,

respectively. As shown in the proof of Theorem 3.1, we can decompose the CCEMG estimator for
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the mth model as

√
N(β̂MG,m − βm) =

1√
N

N∑

i=1

S′
mηi +

1√
N

N∑

i=1

(
S′
mQ̂miSm

)−1
S′
mQ̂miS0(Ik2 −Π′

mΠm)β2

+
1√
N

N∑

i=1

(
S′
mQ̂miSm

)−1
S′
mQ̂miS0(Ik2 −Π′

mΠm)η2i

+
1√
N

N∑

i=1

(
S′
mQ̂miSm

)−1
S′
mΣ̂miγi

+
1√
N

N∑

i=1

(
S′
mQ̂miSm

)−1
S′
m

X′
iMhmεi

T
. (3.3)

In the proof of Theorem 3.1, we show that the first and third terms of (3.3) together converge

to the normal random vector Um, and the fourth term of (3.3) converges to the normal random

vector Vm. Also, the second term converges to the asymptotic bias Amδc, and the last term is a

small order term. From (3.3), we can observe that the normal random vector Um comes from the

random deviations ηi, while the normal random vector Vm comes from the random deviations ιi.

Thus, Um and Vm are independent by Assumptions 3.3 and 3.4.

Theorem 3.1 shows that the trade-off between omitted variable bias and estimation variance

remains in the asymptotic theory. The asymptotic bias comes from the fact that the core regressors

x1it and the auxiliary regressors x2it are correlated. Furthermore, the correlation between x1it and

x2it is due to the common factors ft and the correlation between v1it and v2it. In general, the

asymptotic bias of submodel estimators is nonzero. The asymptotic bias Amδc is zero if the cross-

sectional means of slope coefficients β2i are zero, i.e., β2 = 0, or the auxiliary regressors are

uncorrelated with the core regressors. We will discuss this degenerate case in the next subsection.

In addition to the bias-variance trade-off, Theorem 3.1 also shows that adding more regressors

could have positive or negative effects on estimation variance. Note that the asymptotic variance

Ξm has two components, Ξum and Ξvm, and the diagonal elements of Ξum and Ξvm vary across

different submodels. In most cases, the variance term Ξvm increases when we include more auxiliary

regressors. Unlike Ξvm, due to the special structure of the covariance matrix, the variance term Ξum

may decrease with more auxiliary regressors. One clear example is the comparison between the full

model and the submodel. For the full model, Ξum can be simplified as Ωβ, which is smaller than

Ξum = lim
N→∞

1
N

∑N
i=1RmiQmiΩβQ

′
miR

′
mi of any submodel; see Corollary 3.3 in next subsection

for more discussions. The intuition behind this negative effect is that additional regressors could

filter out extra factors so that the variance term Ξum decreases.3 Since the magnitude of these two

effects are not equal, the total effect of adding more auxiliary regressors on estimation variance

could be positive or negative.

3Note that additional regressors could affect the orthogonal projection matrix Mgm in both Qmi and Σmi. Thus,

it is possible that adding more regressors could have a positive effect on Ξum or a negative effect on Ξvm in different

submodels.
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3.3 Degenerate Cases

In this subsection, we study the asymptotic distribution of the CCEMG estimator for several

special cases. We first consider the case where the correlation of the core regressors x1it and the

auxiliary regressors x2it only comes from the factor structure. Recall that Var(vit) = Σi. Thus,

the individual-specific errors v1it and v2it are uncorrelated when Σi is a diagonal matrix.

Corollary 3.1. Suppose that Assumptions 3.1–3.5 hold. Assume that Σi is a diagonal matrix for

all i. As N,T → ∞ jointly, we have

√
N(β̂MG,m − βm)

d−→ Um +Vm ∼ N(0,Ξm) ,

where Um, Vm, and Ξm are defined in Theorem 3.1.

Corollary 3.1 shows that the submodel estimate has no asymptotic bias when the presence of

the common factors is the only source of the correlation between x1it and x2it in equations (2.3)–

(2.4). The intuition behind Corollary 3.1 is that we are able to filter the common factors by the

cross-sectional averages such that the bias from the omitted auxiliary regressors is eliminated when

x1it and x2it are correlated via the common factors only. In this case, there is no trade-off between

omitted variable bias and estimation variance, and we only have positive or negative effects on

estimation variance.

We next discuss the case where the rank condition is satisfied for some submodels. Note that

when the rank condition is satisfied for the mth model, the larger model that contains all the

regressors in the mth model also satisfies the rank condition. Thus, when the rank condition is

satisfied for at least one submodel, it implies that the full model satisfies the rank condition as well.

Corollary 3.2. Suppose that Assumptions 3.1–3.6 hold. As N,T → ∞ jointly and
√
N/T → 0,

we have

√
N(β̂MG,m − βm)

d−→ Amδc +Um ∼ N(Amδc,Ξum) ,

where Am, δc, Um, and Ξum are defined in Theorem 3.1.

Corollary 3.2 presents the asymptotic distribution of the CCEMG estimator of the mth model

when the rank condition is satisfied. As pointed out by Pesaran (2006), the rank condition is not

necessary for employing the CCEMG estimator. However, efficiency gains can be achieved when

the rank condition is satisfied. This is because the effects of unobserved common factors can be

efficiently eliminated when the rank condition holds.4 Compared to Theorem 3.1, the asymptotic

4Recall that Qmi = p lim
T→∞

(T−1X′
iMgmXi) and Xi = FΓi +Vi, where Vi = (vi1, ...,viT )

′. Thus, we can further

simplify Ξum as lim
N→∞

1
N

∑N
i=1 R̃miΣiΩβΣ

′
iR̃

′
mi, where R̃mi = (S′

mΣiSm)
−1

S′
m. Therefore, all the components

related to the unobserved common factors in the covariance matrix can be efficiently eliminated.
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covariance matrix only consists of one term Ξum, and hence the CCEMG estimator for the submodel

m is more efficient when the rank condition is satisfied.

When the rank condition is satisfied for at least one submodel, Corollary 3.2 implies that

the variance of the full model estimator is Ωβ. We now compare the variance of the full model

estimator, Ωβ, and the variance of the submodel m, Ξum = lim
N→∞

1
N

∑N
i=1 RmiQmiΩβQ

′
miR

′
mi, in

the following corollary.

Corollary 3.3. For j = 1, ..., k1, we have

[Ωβ]jj ≤ [Ξum]jj,

where [A]jj is the jth diagonal element of the matrix A, and Ξum is defined in Theorem 3.1.

Corollary 3.3 shows that the variance of the core regressor in the full model is smaller than

that in any submodel when the rank condition is satisfied. Since the full model has no asymptotic

bias and has smaller asymptotic variance than any submodel, we should prefer the full model when

the rank condition is satisfied for at least one submodel. However, it is hard to verify if the rank

condition holds or not in practice. Therefore, the result inferred from Corollaries 3.2–3.3 does not

provide us a clear guideline to select the submodel in an empirical study. The empirical method of

choosing the submodel is described in the next section.

We now consider the case where we impose the local to zero assumption on both the cross-

sectional means β2 and the random deviations η2i.

Assumption 3.5′. Suppose that
√
N∆−1

NT → c < ∞ as N,T → ∞ jointly. The slope coefficients

β2i follow

β2i = ∆−1
NT (δ + ηδ,i), ηδ,i ∼ i.i.d.(0,Ωδ),

where δ is an unknown constant vector, Ωδ is a symmetric nonnegative definite matrix, and ||Ωδ||
is bounded.

Corollary 3.4. Suppose that Assumptions 3.1–3.4 and 3.5′ hold. As N,T → ∞ jointly, we have
√
N(β̂MG,m − βm)

d−→ Amδc + Ũm +Vm ∼ N
(
Amδc,S

′
mΩ̃βSm +Ξvm

)
,

where Am, δc, Vm, and Ξvm are defined in Theorem 3.1, and Ũm ∼ N(0,S′
mΩ̃βSm) where Ω̃β is

a block diagonal matrix with two blocks Ωβ1
and 0k2×k2 .

Corollary 3.4 presents the asymptotic distribution of the CCEMG estimator for each submodel

when we impose the local to zero assumption on both the cross-sectional means and the random

deviations. Under Assumption 3.5′, the limits of the second, fourth, and fifth terms of the equation

(3.3) remain the same. However, the first term of (3.3) converges to Ũm ∼ N(0,S′
mΩ̃βSm), and

the third term of (3.3) becomes a small order term. Therefore, the random deviations from the

slope coefficients β2i have no effect on the asymptotic distribution of the CCEMG estimator.
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Figure 1: The AMSE, asymptotic squared bias, and asymptotic variance of
√
N
(
β̂1 − β1

)
of sub-

model estimators and the averaging estimator in a three-nested-model framework. The situation

is that of r = 8 and d = 1. The upper three panels correspond to σ2
f = 3.5, and the lower three

panels correspond to ρ = 0.70.

3.4 Numerical Comparison in a Three-Nested-Model Framework

In this subsection, we illustrate the bias-variance trade-off in a simple three-nested-model framework

based on the model (2.1)–(2.2). The model specification is k1 = 1, k2 = 2, M = 3, β1 = 1, and

δ = d·(2.5, 0.75)′ . The narrow model includes no auxiliary regressor. The middle model includes the

first auxiliary regressor. The full model includes both auxiliary regressors. We set E(ftf
′
t) = σ2

fIr

and Var(vit) = Σi, where the diagonal elements of Σi are
√
r, and off-diagonal elements are ρ

√
r

for all i.5

Figure 1 shows the asymptotic mean squared error (AMSE), asymptotic squared bias, and

asymptotic variance of
√
n(β̂1 − β1) of the narrow model estimator, the middle model estimator,

the full model estimator, and the averaging estimator in a three-nested-model framework. It is

clear that the best submodel, which has the lowest AMSE, varies with ρ and σ2
f in the upper and

5We set βi ∼ i.i.d.N(β,Ωβ), γi ∼ i.i.d.N(γ,Ωγ), and Γi ∼ i.i.d.N(Γ,ΩΓ), where γ = 1r×1, Ωβ = 0.5 · Ik,
Ωγ = 3 · Ir, and ΩΓ is an identity matrix. For r ≥ k1 + k2, Γ = [I(k1+k2) 1(k1+k2)×(r−k1+k2)]

′, and for r < k1 + k2,

Γ = [Ir 1r×(k1+k2−r)]
′. We compute Am and Ξm by using 10, 000 random samples. Note that E(ftf

′
t) = σ2

f Ir. Then

we haveQmi = p lim
T→∞

(T−1X′
iMgmXi) = Σi+σ2

f (Γ
′
iΓi−Γ′

iC̄m(C̄′
mC̄m)−C̄′

mΓi), andΣmi = p lim
T→∞

(T−1X′
iMgmF) =

σ2
f (Γ

′
i − Γ′

iC̄m(C̄′
mC̄m)−C̄′

m).
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Figure 2: The AMSE of
√
N
(
β̂1 − β1

)
of submodel estimators and the averaging estimator in a

three-nested-model framework. The situation is that of ρ = 0.8 and σ2
f = 3.5. The three panels

correspond to r = 4, 6, and 8, respectively.

lower panels, respectively. Compared with the three submodels, the averaging estimator has much

lower AMSE in most ranges of the parameter space. Examining the bias and variance in both

panels, we find that the averaging estimator achieves a much lower AMSE by introducing a small

bias and simultaneously obtaining a large variance reduction.

The upper three panels of Figure 1 show that both bias and variance terms are increasing with ρ.

When ρ = 0, Σi is a diagonal matrix. It is easy to see that all three submodels have no asymptotic

bias but different variance, which is consistent with the theoretical result in Corollary 3.1. The

lower three panels of Figure 1 show that the bias term of the submodel estimators is decreasing

with σ2
f , while the variance term is increasing with σ2

f .

Besides the bias-variance trade-off, the upper and lower variance panels of Figure 1 also demon-

strate the positive or negative effects on estimation variance when adding more auxiliary regressors.

The upper panel shows that the full model has the smallest variance for ρ ≤ 0.4, while the lower

variance panel shows that the narrow model has the smaller variance in most of the range of σ2
f .

Figure 2 shows the AMSE of
√
n(β̂1 − β1) of the narrow model estimator, the middle model

estimator, the full model estimator, and the averaging estimator in a three-nested-model framework

for r = 4, 6, and 8, respectively. The three panels show that the best submodel varies with d and

r. For r = 4, the rank condition is satisfied for the full model only. For r = 6 and 8, the rank

condition is not satisfied for all submodels.

We first consider the case where the rank condition is satisfied for some submodels. According

to Corollaries 3.2–3.3, the full model has no bias and the smallest variance. In this case, we should

prefer the full model for all values of d. The left panel demonstrates that the averaging estimator

assigns the whole weight to the full model. The left panel also shows that the negative effect

dominates the positive effect on the estimation variance for d = 0 since the narrow model has the

largest asymptotic variance.

We next consider the case where the rank condition is not satisfied for all submodels. When d

is small, the omitted variable bias is relatively small, and we should prefer the narrow model. On

13



the other hand, when d is larger, we should prefer the full model; see the right panel. However,

due to the positive or negative effects on estimation variance, the larger model could have smaller

variance and then smaller AMSE; see the middle panel.

4 Focused Information Criterion

In this section, we propose a focused information criterion (FIC) for the panel data model with a

multifactor error structure. The parameter of interest is µ = µ(β1,β2) = µ(β), which is a smooth

real-valued function of the cross-sectional means of slope coefficients. Unlike the traditional model

selection approaches, which assess the global fit of the model, we evaluate the model based on the

focus parameter µ. For example, µ could be the average effect of some regressor on a dependent

variable, or the sum of cross-sectional means of slope coefficients.

Let Dβ = ∂µ/∂β be partial derivatives evaluated at the null points (β′
1,0

′)′. Assume that the

partial derivatives are continuous in a neighborhood of the null points. Let µ̂m = µ(β̂MG,m) denote

the submodel estimates. We first study the asymptotic distribution of the submodel estimator of

the focus parameter. Theorem 3.1 and the delta method imply the following theorem.

Theorem 4.1. Suppose that Assumptions 3.1–3.5 hold. As N,T → ∞ jointly, we have

√
N(µ(β̂MG,m)− µ(β))

d−→ Λm = D′
βBmδc +D′

βSm(Um +Vm),

∼ N
(
D′

βBmδc,D
′
βSmΞmS′

mDβ

)
,

where Bm = lim
N→∞

1
N

∑N
i=1 (PmiQmi − Ik)S0, Pmi = Sm (S′

mQmiSm)−1
S′
m, and δc, Um, Vm, and

Ξm are defined in Theorem 3.1.

Theorem 4.1 shows the asymptotic distribution of µ̂m for the general case. A direct calculation

yields

AMSE(µ̂m) = D′
β

(
Bmδcδ

′
cB

′
m + SmΞmS′

m

)
Dβ. (4.1)

The AMSE of µ̂m for the degenerate cases can be derived by the same approach. For example,

when the rank condition is satisfied for the mth model, we have

AMSE(µ̂m) = D′
β

(
Bmδcδ

′
cB

′
m + SmΞumS′

m

)
Dβ, (4.2)

or when Σi is a diagonal matrix for all i, we have6

AMSE(µ̂m) = D′
β

(
S0(Ik2 −Π′

mΠm)δcδ
′
c(Ik2 −Π′

mΠm)S′
0 + SmΞmS′

m

)
Dβ. (4.3)

6Corollary 3.1 shows that the submodel estimator of βm has no asymptotic bias when Σi is a diagonal matrix

for all i. The first term of (4.3) comes from the fact that µ(β) − µ(βm) = D′
β
2
(Ik2

− Π′
mΠm)β2 + O

(
∆−2

NT

)
=

D′
βS0(Ik2

−Π′
mΠm)∆−1

NT δ +O
(
∆−2

NT

)
.
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Observe that AMSE(µ̂m) is a function of Dβ in all cases. Since Dβ depends on the focus parameter

µ, we can use (4.1)–(4.3) to select a proper submodel depending on the parameter of interest. This

is the idea of the FIC proposed by Claeskens and Hjort (2003).

To use (4.1)–(4.3) for model selection, we need to replace the unknown parameters Dβ, Bm,

Ξm, and δc with the sample analogues. It turns out that the sample analog of AMSE(µ̂m) is

the same for both the general and degenerate cases. We first consider the variance part. For the

covariance matrix Ξm, we follow Pesaran (2006) and consider the nonparametric covariance matrix

estimator

Ξ̂m =
1

N − 1

N∑

i=1

(β̂mi − β̂MG,m)(β̂mi − β̂MG,m)′. (4.4)

The following lemma shows that Ξ̂m is a consistent estimator for both Ξm and Ξum. Thus, the

estimator (4.4) is valid in both the general and degenerate cases.

Lemma 4.1. Suppose that Assumptions 3.1–3.5 hold. As N,T → ∞ jointly, we have Ξ̂m
p−→ Ξm.

Further, if Assumption 3.6 is satisfied, then Ξ̂m
p−→ Ξum.

We next consider the bias part. Define D̂β = ∂µ(β̂MG,f )/∂β, where β̂MG,f is the CCEMG

estimate from the full model defined in (2.13). As shown in equations (3.1)–(3.2), β̂MG,f is a

consistent estimator of the cross-sectional means β. Thus, D̂β is a consistent estimator of Dβ by

the continuous mapping theorem.

For Bm, observe that Bm is a function of Qmi and selection matrices. Consider the covariance

matrix estimator Q̂mi = T−1X′
iMhmXi. In the appendix, we show that Q̂mi is a consistent

estimator of Qmi. Thus, it follows that Bm can be consistently estimated by the sample analog

B̂m = 1
N

∑N
i=1

(
P̂miQ̂mi − Ik

)
S0. Note that when Σi is a diagonal matrix for all i, the asymptotic

bias only comes from the difference between µ(β) and µ(βm), as we discussed in equation (4.3).

This implies that B̂m
p−→ S0(Ik2 −Π′

mΠm).

We now discuss the estimator for the local parameter δc. Unlike other unknown parameters,

the consistent estimator for the local parameter δc is not available due to the local asymptotic

framework. We can, however, construct an asymptotically unbiased estimator of δc by using the

estimator from the full model. Let β̂MG,f = (β̂
′

1,f , β̂
′

2,f )
′ such that β̂2,f = S′

0β̂MG,f . Then the

asymptotically unbiased estimator is defined as δ̂c =
√
N β̂2,f = N−1/2

∑N
i=1 β̂2,fi. From (3.1)–

(3.2), we can show that

δ̂c =
√
N β̂2,f

d−→ Zδ ∼ N
(
δc,S

′
0ΞfS0

)
. (4.5)

As shown above, δ̂c is an asymptotically unbiased estimator of δc. Therefore, the asymptotically

unbiased estimator of δcδ
′
c is

δ̂cδ
′
c = δ̂cδ̂

′

c − S′
0Ξ̂fS0, (4.6)
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where Ξ̂f = 1
N−1

∑N
i=1(β̂fi − β̂MG,f )(β̂fi − β̂MG,f )

′ is a consistent estimator of Ξf by Lemma 4.1.

We now follow Claeskens and Hjort (2003) and define the FIC for the large heterogeneous panel

data model. The proposed FIC of the mth model is

FICm = D̂′
β

(
B̂m(δ̂cδ̂

′

c − S′
0Ξ̂fS0)B̂

′
m + SmΞ̂mS′

m

)
D̂β, (4.7)

which is an asymptotically unbiased estimator of AMSE(µ̂m) in both the general and degenerate

cases. The proposed FIC aims to minimize the sample analog of AMSE and can be applied to all

cases. In practice, we select the model with the lowest value of FICm.

5 Plug-In Averaging Estimator

In this section, we extend the idea of the FIC and propose a plug-in model averaging estimator

for the panel data model with a multifactor error structure. Instead of comparing the AMSE of

each submodel, we first derive the AMSE of the averaging estimator with fixed weight in a local

asymptotic framework. We next use this asymptotic result to characterize the optimal weights of

the averaging estimator under the quadratic loss function. We then follow Liu (2015) and propose

a plug-in estimator to estimate the infeasible optimal weights.

We now introduce the averaging estimator of the focus parameter µ. Let wm ≥ 0 be the weight

corresponding to the mth submodel, and w = (w1, ..., wM )′ be a weight vector belonging to the

weight set W = {w ∈ [0, 1]M :
∑M

m=1 wm = 1}. That is, the weight vector lies in the unit simplex

in R
M . The model averaging estimator of µ is defined as

µ̂(w) =

M∑

m=1

wmµ̂m =

M∑

m=1

wmµ(β̂MG,m). (5.1)

Note that the averaging estimator includes the CCEMG estimator in the mth submodel as a special

case by setting the weight vector w to equal the unit weight vector w0
m where the mth element is

one and others are zeros. The following theorem shows the asymptotic normality of the averaging

estimator with fixed weights.

Theorem 5.1. Suppose that Assumptions 3.1–3.5 hold. As N,T → ∞ jointly, we have

√
N(µ̂(w)− µ)

d−→ N(D′
βB(w)δc,Ξ(w)),

where

B(w) =

M∑

m=1

wm

(
lim

N→∞

1

N

N∑

i=1

(PmiQmi − Ik)S0

)
=

M∑

m=1

wmBm,

Ξ(w) =
M∑

m=1

w2
mD′

βSmΞmS′
mDβ + 2

∑∑

m6=ℓ

wmwℓD
′
βSmΞmℓS

′
ℓDβ,

Ξmℓ = lim
N→∞

1

N

N∑

i=1

RmiQmiΩβQ
′
ℓiR

′
ℓi + lim

N→∞

1

N

N∑

i=1

RmiΣmiΩγΣ
′
ℓiR

′
ℓi.
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Theorem 5.1 shows the asymptotic normality of the averaging estimator with nonrandom

weights for the general case. The asymptotic bias and variance of the averaging estimator are

D′
βB(w)δc and Ξ(w), respectively.

This result implies that the AMSE of the averaging estimator µ̂(w) is

AMSE(µ̂(w)) = w′Ψw, (5.2)

where Ψ is an M ×M matrix with the (m, ℓ)th element

Ψmℓ = D′
β

(
Bmδcδ

′
cB

′
ℓ + SmΞmℓS

′
ℓ

)
Dβ. (5.3)

Similarly, the AMSE of µ̂(w) for the degenerate cases can be derived by the same approach. For

example, when the rank condition is satisfied for all models, we have AMSE(µ̂(w)) = w′Ψw with

Ψmℓ = D′
β

(
Bmδcδ

′
cB

′
ℓ + SmΞu,mℓS

′
m

)
Dβ, (5.4)

where Ξu,mℓ = lim
N→∞

1
N

∑N
i=1 RmiQmiΩβQ

′
ℓiR

′
ℓi, or when Σi is a diagonal matrix for all i, we have

AMSE(µ̂(w)) = w′Ψw with

Ψmℓ = D′
β

(
S0(Ik2 −Π′

mΠm)δcδ
′
c(Ik2 −Π′

ℓΠℓ)S
′
0 + SmΞmℓS

′
m

)
Dβ. (5.5)

Since the AMSE of the averaging estimator µ̂(w) is linear-quadratic in w, we can minimize the

AMSE(µ̂(w)) over w ∈ W and obtain the optimal fixed-weight vector:

wo = argmin
w∈W

w′Ψw. (5.6)

Note that when M = 2, we have a closed-form solution to (5.6). When M > 2, the optimal weight

vector can be found numerically via quadratic programming, for which numerical algorithms are

available for most programming languages.

The optimal weight vector, however, is infeasible, since Ψ is unknown. We follow Liu (2015)

and propose a plug-in estimator to estimate the optimal weights. We first estimate the AMSE of

the averaging estimator by plugging in an asymptotically unbiased estimator of Ψ. We then choose

the data-driven weights by minimizing the sample analogue of the AMSE and use these estimated

weights to construct the plug-in averaging estimator.

Let Ψ̂ be a sample analogue of Ψ with the (m, ℓ)th element

Ψ̂mℓ = D̂′
β

(
B̂mδ̂cδ

′
cB̂

′
ℓ + SmΞ̂mℓS

′
ℓ

)
D̂β, (5.7)

where δ̂cδ
′
c is defined in (4.6) and

Ξ̂mℓ =
1

N − 1

N∑

i=1

(β̂mi − β̂MG,m)(β̂ℓi − β̂MG,ℓ)
′. (5.8)

The following lemma shows that Ξ̂mℓ is a consistent estimator for both Ξmℓ and Ξu,mℓ. Thus, the

nonparametric covariance matrix estimator Ξ̂mℓ is valid in both the general and degenerate cases.
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Lemma 5.1. Suppose that Assumptions 3.1–3.5 hold. As N,T → ∞ jointly, we have Ξ̂mℓ
p−→ Ξmℓ.

Further, if Assumption 3.6 is satisfied, then Ξ̂mℓ
p−→ Ξu,mℓ.

We now define the plug-in averaging estimator. The data-driven weights based on the plug-in

estimator are defined as

ŵ = (ŵ1, ..., ŵM )′ = argmin
w∈W

w′Ψ̂w, (5.9)

where w′Ψ̂w is an asymptotically unbiased estimator of w′Ψw in both the general and degen-

erate cases. Similar to the optimal weight vector, the data-driven weights can also be computed

numerically via quadratic programming. The plug-in averaging estimator of µ is defined as

µ̂(ŵ) =

M∑

m=1

ŵmµ̂m =

M∑

m=1

ŵmµ(β̂MG,m). (5.10)

As mentioned by Hjort and Claeskens (2003), we can also estimate Ψ by inserting δ̂c for δc

directly. Thus, the alternative estimator of Ψmℓ is

Ψ̃mℓ = D̂′
β

(
B̂mδ̂cδ̂c

′
B̂′

ℓ + SmΞ̂mℓSℓ

)
D̂β. (5.11)

Our simulation shows that both averaging estimators (5.7) and (5.11) have similar finite sample

performance. The following theorem presents the asymptotic distribution of the plug-in averaging

estimator defined in (5.7)–(5.10).

Theorem 5.2. Suppose that Assumptions 3.1–3.5 hold. As N,T → ∞ jointly, we have

√
N(µ(ŵ)− µ)

d−→
M∑

m=1

w∗
mΛm, (5.12)

where Λm is defined in Theorem 4.1, and w∗ = (w∗
1, ..., w

∗
M )′ = argmin

w∈W

w′Ψ∗w and Ψ∗ is an M×M

matrix with the (m, ℓ)th element

Ψ∗
mℓ = D′

β

(
Bm(ZδZ

′
δ − S′

0ΞfS0)B
′
ℓ + SmΞmℓS

′
ℓ

)
Dβ. (5.13)

Unlike the averaging estimator with fixed weights, Theorem 5.2 shows that the averaging estima-

tor with data-driven weights has a nonstandard limiting distribution. This is because the estimate

δ̂cδ
′
c is random in the limit, and hence estimated weights are asymptotically random under the

local asymptotic framework. This non-normal nature of the asymptotic distribution of the averag-

ing estimator with data-driven weights is also pointed out by Hjort and Claeskens (2003) and Liu

(2015). To conduct inference for the focus parameter µ, one might consider the simulation-based

confidence intervals suggested by DiTraglia (2016) or follow Liu (2015) and construct a confidence

interval. A rigorous demonstration of the validity of these inference methods is beyond the scope

of the present paper and is left for future research.
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6 Simulation Study

In this section, we study the finite sample mean squared error of the FIC and the plug-in averaging

estimator via Monte Carlo experiments.

6.1 Simulation Setup

We consider the following data generating process:

yit = x′
itβi + γ ′

ift + εit,

xit = Γ′
ift + vit,

βi = β + ηi,

β = d

(
1

4
,
1

4
,

1√
N

(
1,

k2 − 1

k2
, · · · , 1

k2

))′

,

where fjt ∼ i.i.d.N(0, 1) for j = 1, ..., r, γij ∼ i.i.d.N(1, 0.25) for j = 1, ..., r, Γijℓ ∼ i.i.d.N(0.5, 2.25)

for j = 1, ..., r and ℓ = 1, ..., k, εit ∼ i.i.d.N(0, r), ηij ∼ i.i.d.N(0, 0.01) for j = 1, ..., k, and

vit = (v1it, ..., vkit)
′ ∼ N(0,Σi) where the diagonal elements of Σi are

√
r and off-diagonal elements

are ρ
√
r. The parameter d is varied on a grid between 0.2 and 2. We set ρ = 0, 0.25, 0.5, and 0.75.

The number of common factors ft is varied between 3 and 15. The number of regressors is k = 6

with two core regressors (k1 = 2) and four auxiliary regressors (k2 = 4). We consider all possible

submodels, that is, the number of models is M = 16. We set the sample size N = 25, 50, 100, and

200, and the sample size T = 25, 50, 75, and 100.

We consider the following estimators: (1) CCEMG estimator for the full model estimator (Full),

(2) averaging estimator with equal weights (Equal), (3) AIC model selection estimator (AIC),7 (4)

BIC model selection estimator (BIC),8 (5) FIC model selection estimator (FIC), and (6) plug-in

averaging estimator (Plug-In).

Our parameter of interest is µ = β1 + β2, that is, the sum of cross-sectional means of the slope

coefficients for core regressors. We follow Hansen (2007) and compare these estimators based on

the risk (expected squared error). The risk is calculated by averaging across 5, 000 random samples.

We normalize the risk by dividing by the risk of the infeasible optimal CCEMG estimator, that is,

the risk of the best-fitting submodel m.

6.2 Simulation Results

The normalized risk functions are displayed in Figures 3–6. We first examine the finite sample

performance of model selection and model averaging estimators in a general setting where the rank

condition is not satisfied for all submodels. Figure 3 shows the normalized risk for ρ = 0, 0.25, 0.5,

and 0.75 in four panels. It is clear that FIC achieves lower normalized risk than Full in all cases, and

7The AIC criterion for the mth model is AICm =
∑N

i=1 T log(σ̂2
mi) + 2N(2k1 + 2k2m + 1), where σ̂2

mi =

(ê′
miêmi)/(T − 2k1 − 2k2m − 1) and êmi = Mhm(yi −Xmiβ̂mi) are the residuals from the submodel m.
8The BIC criterion for the mth model is BICm =

∑N
i=1 T log(σ̂2

mi) + log(TN)N(2k1 + 2k2m + 1).
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Figure 3: Normalized risk functions for N = 100, T = 50, and r = 8.
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Figure 4: Normalized risk functions for N = 100, T = 50, and ρ = 0.5.
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Figure 5: Normalized risk functions for N = 100, r = 8, and ρ = 0.5.
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Figure 6: Normalized risk functions for T = 50, r = 8, and ρ = 0.5.
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the normalized risk of FIC is close to that of infeasible optimal model selection. AIC, BIC, and FIC

have similar normalized risk for ρ = 0. However, both AIC and BIC have quite poor performance

for ρ = 0.25, 0.5, and 0.75. The normalized risk of Plug-In and Equal is indistinguishable for ρ = 0,

but Equal has much larger normalized risk for ρ = 0.25, 0.5, and 0.75. Overall, Plug-In performs

well and dominates other estimators in most ranges of the parameter space. Figure 3 also shows

that Plug-In achieves lower normalized risk than one, which means that the risk of Plug-In is lower

than that of the infeasible best-fitting submodel m.

We now examine the normalized risk when the rank condition is satisfied for some submodels.

Figure 4 shows the normalized risk for r = 3, 7, 11, and 15 in four panels. For r = 3, the rank

condition is satisfied for all models. In this setting, Plug-In, FIC, and Full have similar normalized

risk, and they have better performance than AIC, BIC, and Equal. For r = 7, the full model is the

only model that satisfies the rank condition. In this setting, FIC and Full have similar performance

for d > 1, but FIC has lower normalized risk than Full for d < 1. FIC also achieves much lower

normalized risk than AIC and BIC in most ranges of the parameter d. In general, Plug-In has better

performance than other estimators. The normalized risk of Plug-In and Equal is quite similar for

d < 0.4. However, the normalized risk of Equal is quite poor relative to that of Plug-In for d > 0.4.

For r = 11 and 15, the ranking of estimators is quite similar to that for r = 7.

We now examine the effect of the sample size on the normalized risk. Figure 5 shows the

normalized risk for a fixed N = 100 and for T = 25, 50, 75, and 100 in four panels. As the sample

size T increases, the normalized risk of most estimators decreases. When T = 25 and 50, Plug-In

outperforms other estimators in most cases. When T = 75 and 100, the normalized risk of Plug-In,

FIC, and Full is close to one for larger d and lower than those of AIC, BIC, and Equal in most

ranges of the parameter d. Figure 6 shows the normalized risk for a fixed T = 50 and for N = 25,

50, 100, and 200 in four panels. Unlike the results shown in Figure 5, the ranking of estimators

is quite similar across different sample sizes N . In most cases, Plug-In has much lower normalized

risk than other estimators, and the performance of Plug-In is quite robust to different sample sizes.

7 Empirical Example

In this section, we apply the proposed methods to analyze the consumer response to changes in

gasoline taxes. To directly examine the effect of gasoline taxes on gasoline consumption, several

issues have been raised in the existing studies, for example, the frequency of the data used, the

components of the gasoline price, the econometric methods, and the control variables. These un-

resolved issues could lead to opposite empirical results; see Espey (1998), Small and Van Dender

(2007), Hughes, Knittel, Sperling et al. (2008), and Davis and Kilian (2011). Recently, Li, Linn,

and Muehlegger (2014) decompose the retail gasoline price into tax and non-tax components, and

provide robust evidence that gasoline taxes have more strongly negative effects on gasoline con-

sumption than do non-tax components. We apply the focused information criterion and the plug-in

averaging estimator to U.S. gasoline consumption and revisit the empirical exercise given in Table

2 of Li, Linn, and Muehlegger (2014).
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7.1 Empirical Methodology and Data

We estimate the following model

ln(qit) = α1i ln(pit) + α2i ln

(
1 +

τit
pit

)
+ x′

itβi + γ′
ift + εit (7.1)

where qit is the gasoline consumption per adult by state i and year t, pit is the tax-exclusive gasoline

price, τit is the total gasoline tax, and xit is a vector of state-level control variables.9

To compare the effects of a tax-inclusive gasoline price and gasoline taxes, we follow Li, Linn,

and Muehlegger (2014) and consider two model specifications. In Model Setup I, the tax-inclusive

gasoline price is the main regressor, while in Model Setup II, we decompose the tax-inclusive gasoline

price into tax and tax-exclusive components. Model Setup I has one core regressor, the tax-inclusive

gasoline price (INCPRICE), and Model Setup II has two core regressors, the tax-exclusive gasoline

price (EXCPRICE) and the excise tax rate (TAX). Both model setups include the following seven

auxiliary regressors: the average family size (FAMILY), the log road miles per adult (ROAD), the

log real income per capita (INCOME), the log number of registered cars per capita (CAR), the

log number of registered trucks per capita (TRUCK), the log number of licensed drivers per capita

(LICENSE), and the fraction of the population living in metro areas (URBAN). For both model

setups, we consider all possible subsets of auxiliary regressors and the number of submodels is 128.

The annual data are taken from Li, Linn, and Muehlegger (2014), which are available at the

American Economic Journal: Economic Policy website. The total sample size is 2, 064 by state-year

from 1966 to 2008; see Li, Linn, and Muehlegger (2014) for a detailed description of data and their

source. Our empirical model (7.1) is more general than that used in Li, Linn, and Muehlegger

(2014). First, we allow the heterogeneity of the coefficients, which means that we do not impose

the assumption that all states have the same price elasticity of gasoline consumption. Second, we

consider the presence of the unobserved common factors, ft, to characterize the global shocks, such

as global supply and aggregate demand shocks and oil-specific market demand shocks.10

7.2 Empirical Results

We first examine the effect of the tax-inclusive gasoline price on gasoline consumption. In Model

Setup I, the parameter of interest is the price elasticity of gasoline consumption, that is, the

coefficient of INCPRICE. Table 1 presents the coefficient estimates and standard errors for Model

9Model (7.1) holds under the following two assumptions: (1) the retail gasoline price is orthogonal to the gasoline

demand shocks in the U.S. market, and (2) the crude oil price is orthogonal to the gasoline demand shocks in the

U.S. market. The first assumption can be justified by the fact that the gasoline prices are determined by a huge

market, and the fluctuations of price caused by the local shocks are marginal; see Marion and Muehlegger (2011) and

Rivers and Schaufele (2015). The second assumption is valid because the crude oil price is determined by the global

demand and supply, and hence it is orthogonal to the gasoline demand shock.
10Kilian (2010) points that the fluctuation of gasoline consumption is contributed by gasoline demand shocks and

global shocks. Stock and Watson (2016) and Caldara, Cavallo, and Iacoviello (2016) find that the fluctuation of the

crude oil price is mainly affected by global shocks.
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Table 1: Estimation results using the tax-inclusive gasoline price.

Full Equal AIC BIC FIC Plug-In

INCPRICE -0.0583 -0.0559 -0.0336 -0.0596 -0.0453 -0.0520

(0.0349) (0.0273) (0.0277) (0.0360) (0.0252) (0.0244)

FAMILY 0.0163 0.0059 0.0174 0.0091

(0.0089) (0.0043) (0.0094) (0.0068)

ROAD -0.0414 0.0337 0.1220 0.0811

(0.1041) (0.0356) (0.0623) (0.0437)

INCOME 0.2443 0.1381 0.2902 0.2688 0.2410

(0.0433) (0.0203) (0.0467) (0.0447) (0.0367)

CAR 0.0223 0.0198 0.0316 0.0121

(0.0266) (0.0108) (0.0251) (0.0072)

TRUCK 0.0312 0.0243 0.0243 0.0304 0.0225

(0.0158) (0.0065) (0.0167) (0.0150) (0.0106)

LICENSE 0.0743 0.0307 0.0596 0.0502

(0.0400) (0.0147) (0.0298) (0.0206)

URBAN 2.1189 0.5585 0.6783 0.0792

(1.2528) (0.5029) (0.9057) (0.2424)

Note: Standard errors are reported in parentheses.

Setup I.11 The estimation results show that the coefficient estimates of INCPRICE are similar

across different estimators, while AIC has a smaller coefficient estimate of INCPRICE. These results

suggest that the price elasticity of gasoline consumption is negative, which is consistent with the

conventional wisdom in the literature that the elasticity is salient. For auxiliary regressors, most

coefficients have the same signs across different estimation methods except the estimated coefficient

of ROAD by Full. One important finding from Table 1 is that Plug-In has the smallest standard

error of INCPRICE as compared to other estimators.

We next examine the effect of gasoline taxes on gasoline consumption. In Model Setup II, we

consider two different focus parameters. The first focus parameter is the price elasticity of demand,

that is, the coefficient of EXCPRICE, while the second focus parameter is the tax elasticity of

demand, that is, the coefficient of TAX. Table 2 presents the coefficient estimates and standard

errors for Model Setup II for both focus parameters. It is clear that both gasoline taxes and the

gasoline price have negative effects on gasoline consumption, and the effect of gasoline taxes is

stronger than that of the gasoline price. Compared with Table 1, we find that the effect of the

gasoline price on gasoline consumption shown in Model Setup II is stronger than that in Model

Setup I, which is consistent with the results in Table 2 of Li, Linn, and Muehlegger (2014). Table 2

also shows that the standard errors of focus parameters obtained by Plug-In are smaller than those

obtained by other estimators.

Tables 3–5 report the Plug-In weights placed on each submodel and regressor sets for each

11The standard error of the plug-in averaging estimator is calculated based on Theorem 5.1, i.e., Ξ̂(w) =∑M
m=1 ŵ

2
mD̂′

βSmΞ̂mS′
mD̂β + 2

∑∑
m6=ℓ ŵmŵℓD̂

′
βSmΞ̂mℓS

′
ℓD̂β.
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Table 2: Estimation results using the tax-exclusive gasoline price.

µ : EXCPRICE µ : TAX

Full Equal AIC BIC FIC Plug-In FIC Plug-In

EXCPRICE -0.0723 -0.0765 -0.0706 -0.1204 -0.0673 -0.0793 -0.0716 -0.0720

(0.0371) (0.0255) (0.0275) (0.0305) (0.0238) (0.0223) (0.0289) (0.0244)

TAX -0.1198 -0.2137 -0.2128 -0.3460 -0.2243 -0.2315 -0.2017 -0.2197

(0.0849) (0.0546) (0.0534) (0.0751) (0.0539) (0.0505) (0.0517) (0.0461)

FAMILY 0.0040 0.0006 0.0003 1.94E-05

(0.0085) (0.0040) (0.0015) (2.10E-05)

ROAD -0.0636 0.0383 0.0315 0.0226

(0.1177) (0.0351) (0.0190) (0.0099)

INCOME 0.2130 0.1224 0.2775 0.2859 0.1803 0.2522 0.1960

(0.0470) (0.0202) (0.0474) (0.0426) (0.0272) (0.0459) (0.0327)

CAR 0.0217 0.0203 0.0574 0.0531 0.0217 0.0572 0.0340

(0.0234) (0.0095) (0.0216) (0.0205) (0.0084) (0.0218) (0.0118)

TRUCK 0.0184 0.0202 0.0187 0.0182

(0.0166) (0.0058) (0.0039) (0.0047)

LICENSE 0.0581 0.0217 0.0491 0.0387 0.0214

(0.0377) (0.0140) (0.0301) (0.0241) (0.0140)

URBAN 1.9469 0.3266 -0.1697 -0.0263 0.5667 0.0323

(1.3752) (0.4865) (1.1090) (0.4873) (1.0438) (0.6516)

Note: Standard errors are reported in parentheses.

submodel for Model Setup I and II. For Model Setup I, Plug-In puts most weights on the submodels

with 4 or 5 auxiliary regressors, while for Model Setup II, Plug-In puts most weights on the

submodels with 2–4 auxiliary regressors. One interesting observation is that for Model Setup II

the submodels chosen by Plug-In for different focus parameters are almost completely different in

Tables 4–5.

8 Conclusion

Many studies have revealed the importance of taking account of the model uncertainty by adopting

a model averaging approach. In this paper, we extend the existing literature on frequentist model

averaging to the panel data framework with a multifactor error structure. We follow Pesaran (2006)

and estimate the cross-sectional means of unknown slope coefficients by common correlated effects

mean group estimators and study the limiting distributions of all submodel estimators in a local

asymptotic framework. We then propose a focused information criterion and a plug-in averaging

estimator for large heterogeneous panels and study the asymptotic properties in a local asymptotic

framework. Our proposed selection criterion and averaging estimators aim to minimize the sample

analog of the asymptotic mean squared error and can be applied to cases irrespective of whether

the rank condition holds or not. Our Monte Carlo simulations show that the proposed estimators

have satisfactory expected squared error as compared to other methods.
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Table 3: Submodel weights and regressor set for Model Setup I (µ : INCPRICE).

Weights Regressor Set

0.1647 INCPRICE, FAMILY, ROAD, INCOME, TRUCK

0.1313 INCPRICE, FAMILY, ROAD, INCOME, CAR, TRUCK

0.0936 INCPRICE, LICENSE

0.0001 INCPRICE, FAMILY, ROAD, INCOME, LICENSE

0.0048 INCPRICE, CAR, LICENSE

0.0002 INCPRICE, INCOME, CAR, LICENSE

0.0003 INCPRICE, ROAD, INCOME, CAR, LICENSE

0.1248 INCPRICE, FAMILY, ROAD, INCOME, CAR, LICENSE

0.2663 INCPRICE, FAMILY, ROAD, INCOME, TRUCK, LICENSE

0.0356 INCPRICE, FAMILY, ROAD, INCOME, CAR, TRUCK , LICENSE

0.0018 INCPRICE, CAR, LICENSE, URBAN

0.1752 INCPRICE, INCOME, TRUCK, LICENSE, URBAN

Table 4: Submodel weights and regressor set for Model Setup II (µ : EXCPRICE).

Weights Regressor Set

0.1438 EXCPRICE, TAX, FAMILY, ROAD, TRUCK

0.0175 EXCPRICE, TAX, FAMILY, ROAD, INCOME, TRUCK

0.0815 EXCPRICE, TAX, INCOME, LICENSE

0.4079 EXCPRICE, TAX, INCOME, CAR, LICENSE

0.0050 EXCPRICE, TAX, ROAD, TRUCK, URBAN

0.1590 EXCPRICE, TAX, INCOME, LICENSE, URBAN

0.0681 EXCPRICE, TAX, TRUCK, LICENSE, URBAN

0.1170 EXCPRICE, TAX, ROAD, TRUCK, LICENSE, URBAN

Table 5: Submodel weights and regressor set for Model Setup II (µ : TAX).

Weights Regressor set

0.0925 EXCPRICE, TAX, INCOME, CAR

0.1105 EXCPRICE, TAX, ROAD, TRUCK

0.0001 EXCPRICE, TAX, ROAD, INCOME, TRUCK

0.0928 EXCPRICE, TAX, CAR, LICENSE

0.0602 EXCPRICE, TAX, INCOME, CAR, LICENSE

0.3275 EXCPRICE, TAX, INCOME, CAR, URBAN

0.0002 EXCPRICE, TAX, FAMILY, INCOME, CAR, URBAN

0.0249 EXCPRICE, TAX, ROAD, INCOME, TRUCK, URBAN

0.0022 EXCPRICE, TAX, FAMILY, INCOME, CAR, LICENSE, URBAN

0.2883 EXCPRICE, TAX, INCOME, TRUCK, LICENSE, URBAN
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Appendix

A Proofs of Theorems

Proof of Theorem 3.1. Note that β̂MG,m = 1
N

∑N
i=1 β̂mi. We first decompose the CCE estima-

tor in the submodel m. Observe that Xmi = (X1i,X2iΠ
′
m) = XiSm, βmi = (β′

1i,β
′
2iΠ

′
m)′ = S′

mβi,

and X2i = XiS0. By some algebra, it follows that

β̂mi = (X′
miMhmXmi)

−1X′
miMhmyi

= (X′
miMhmXmi)

−1X′
miMhm(X1iβ1i +X2iΠ

′
mΠmβ2i +X2i(Ik2 −Π′

mΠm)β2i + Fγi + εi)

= (X′
miMhmXmi)

−1X′
miMhmXmiβmi

+ (X′
miMhmXmi)

−1X′
miMhm(X2i(Ik2 −Π′

mΠm)β2i + Fγi + ε)

= βmi + (X′
miMhmXmi)

−1X′
miMhm(XiS0(Ik2 −Π′

mΠm)β2i + Fγi + εi). (A.1)

By Assumption 3.4, we have βmi = S′
mβi = S′

m(β + ηi). Then we have

√
N(β̂MG,m − βm) =

1√
N

N∑

i=1

(β̂mi − βmi + βmi − βm)

=
1√
N

N∑

i=1

S′
mηi +

1√
N

N∑

i=1

(X′
miMhmXmi)

−1X′
miMhmXiS0(Ik2 −Π′

mΠm)β2

+
1√
N

N∑

i=1

(X′
miMhmXmi)

−1X′
miMhmXiS0(Ik2 −Π′

mΠm)η2i

+
1√
N

N∑

i=1

(X′
miMhmXmi)

−1X′
miMhmFγi

+
1√
N

N∑

i=1

(X′
miMhmXmi)

−1X′
miMhmεi

≡ I1 + I2 + I3 + I4 + I5. (A.2)

We consider the first and third terms of (A.2). Observe that

S0(Ik2 −Π′
mΠm)η2i = S0(Ik2 −Π′

mΠm)S′
0ηi

=

[
0k1 0k1×k2

0k2×k1 Ik2 −Π′
mΠm

]
ηi

= (Ik − SmS′
m)ηi. (A.3)
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Therefore, we have

I1 + I3 =
1√
N

N∑

i=1

S′
mηi +

1√
N

N∑

i=1

(X′
miMhmXmi)

−1X′
miMhmXi(Ik − SmS′

m)ηi

=
1√
N

N∑

i=1

(
S′
m + (X′

miMhmXmi)
−1X′

miMhmXi(Ik − SmS′
m)
)
ηi

=
1√
N

N∑

i=1

(
S′
m + (S′

m(T−1X′
iMhmXi)Sm)−1S′

m(T−1X′
iMhmXi)(Ik − SmS′

m)
)
ηi

=
1√
N

N∑

i=1

(
S′
m + (S′

m(T−1X′
iMhmXi)Sm)−1S′

m(T−1X′
iMhmXi)

− (S′
m(T−1X′

iMhmXi)Sm)−1(S′
m(T−1X′

iMhmXi)Sm)S′
m

)
ηi

=
1√
N

N∑

i=1

(S′
m(T−1X′

iMhmXi)Sm)−1S′
m(T−1X′

iMhmXi)ηi

=
1√
N

N∑

i=1

(S′
m(T−1X′

iMgmXi)Sm)−1S′
m(T−1X′

iMgmXi)ηi +Op

(
1√
N

)
+Op

(
1√
T

)
,

where the last equality holds by Lemma C.1 (i). By Assumption 3.4, as N,T → ∞ jointly, we have

I1 + I3
d−→ Um ∼ N(0,Ξum), (A.4)

where

Ξum = lim
N→∞

1

N

N∑

i=1

(S′
mQmiSm)−1S′

mQmiΩβQ
′
miSm(S′

mQmiSm)−1

= lim
N→∞

1

N

N∑

i=1

RmiQmiΩβQ
′
miR

′
mi,

and Rmi = (S′
mQmiSm)−1S′

m.

We next consider the second term of (A.2). By Assumption 3.5 and Lemma C.1 (i), we have

I2 =
1

N

N∑

i=1

(S′
m(T−1X′

iMhmXi)Sm)−1S′
m(T−1X′

iMhmXi)S0(Ik2 −Π′
mΠm)

√
N∆−1

NTδ,

=
1

N

N∑

i=1

(S′
m(T−1X′

iMgmXi)Sm)−1S′
m(T−1X′

iMgmXi)S0(Ik2 −Π′
mΠm)

√
N∆−1

NTδ

+Op

(
1

∆NT

√
N

)
+Op

(
1

∆NT

√
T

)
,

p−→ lim
N→∞

1

N

N∑

i=1

(S′
mQmiSm)−1S′

mQmiS0(Ik2 −Π′
mΠm)cδ = Amδc, (A.5)

where Am = lim
N→∞

1
N

∑N
i=1 RmiQmiS0(Ik2 −Π′

mΠm) and δc = c · δ.
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We now consider the fourth term of (A.2). Let γ̄ = 1
N

∑N
i=1 γi and ῑ = 1

N

∑N
i=1 ιi. By

Assumption 3.3, we have

I4 =
1√
N

N∑

i=1

(S′
m(T−1X′

iMhmXi)Sm)−1S′
m(T−1X′

iMhmF)γi

=
1√
N

N∑

i=1

(S′
m(T−1X′

iMhmXi)Sm)−1S′
m(T−1X′

iMhmF) (γ̄ + (ιi − ῑ))

=
1√
N

N∑

i=1

(S′
m(T−1X′

iMgmXi)Sm)−1S′
m(T−1X′

iMgmF) (ιi − ῑ) +Op

(
1√
N

)
+Op

(
1√
T

)
,

where the last equality holds by Lemma C.1 (i), (iii), and (iv). Therefore, by Assumption 3.3, as

N,T → ∞ jointly, we have

I4
d−→ Vm ∼ N(0,Ξvm), (A.6)

where

Ξvm = lim
N→∞

1

N

N∑

i=1

(S′
mQmiSm)−1S′

mΣmiΩγΣ
′
miSm(S′

mQmiSm)−1

= lim
N→∞

1

N

N∑

i=1

RmiΣmiΩγΣ
′
miR

′
mi.

Note that ηi are distributed independently of ιi across i by Assumption 3.4. Thus, Um and Vm

are two stochastically independent normal random vectors.

For the last term of (A.2), note that εit is independent of v1it, v2it and ft for all i and t by

Assumptions 3.1 and 3.2. It follows that E(I5) = 0 and

I5 =
1√
N

N∑

i=1

(S′
m(T−1X′

iMhmXi)Sm)−1S′
m(T−1X′

iMhmεi)

=
1√
N

N∑

i=1

(S′
m(T−1X′

iMgmXi)Sm)−1S′
m(T−1X′

iMgmεi) +Op

(
1√
N

)
+Op

(
1√
T

)

= Op

(
1√
N

)
+Op

(
1√
T

)
, (A.7)

where the second equality holds by Lemma C.1 (i) and (ii), and the last equality holds by the fact

that T−1X′
iMgmεi = Op

(
T−1/2

)
. Combining (A.4), (A.5), (A.6), and (A.7), we have

√
N(β̂MG,m − βm)

d−→ Amδc +Um +Vm ∼ N(Amδc,Ξum +Ξvm) .

This completes the proof.
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Proof of Theorem 4.1. Define βc
2m = {β2 : β2j /∈ β2m, for j = 1, ..., k2}. That is, βc

2m is

the set of parameters β2j that are not included in submodel m. Hence, we can write µ(β) =

µ(β1,β2m,βc
2m) and µ(βm) = µ(β1,β2m,0). By a standard Taylor series expansion, it follows that

µ(β1,β2m,βc
2m) = µ(β1,β2m,0) +

∂µ(β1,β2m,0)

∂βc
2m

′

βc
2m +O

(
1

∆2
NT

)

= µ(β1,β2m,0) +
∂µ(β1,β2m,0)

∂β2

′

(Ik2 −Π′
mΠm)β2 +O

(
1

∆2
NT

)

= µ(βm) +D′
β2
(Ik2 −Π′

mΠm)β2 +O

(
1

∆2
NT

)
. (A.8)

Then we have µ(β)− µ(βm) = D′
β2
(Ik2 −Π′

mΠm)β2 +O
(
∆−2

NT

)
.

By Assumptions 3.1–3.5, the result from Theorem 3.1, and the delta method, we have

√
N(µ(β̂MG,m)− µ(βm))

d−→ D′
βm

(Amδc +Um +Vm) . (A.9)

Combining (A.8) and (A.9), it follows that

√
N(µ(β̂MG,m)− µ(β)) =

√
N(µ(β̂MG,m)− µ(βm))−

√
N(µ(β)− µ(βm))

d−→ D′
βm

(Amδc +Um +Vm)−D′
β2
(Ik2 −Π′

mΠm)δc

= D′
βSm(Um +Vm) +D′

βBmδc

∼ N(D′
βBmδc,D

′
βSmΞmS′

mDβ),

whereBm = lim
N→∞

1
N

∑N
i=1 ((PmiQmi − Ik)S0), Pmi = Sm (S′

mQmiSm)−1
S′
m, and the second equal-

ity holds by the facts that

D′
βm

Amδc −D′
β2
(Ik2 −Π′

mΠm)δc

= lim
N→∞

(
1

N

N∑

i=1

D′
βPmiQmiS0 −D′

βS0

)
(Ik2 −Π′

mΠm)δc

= lim
N→∞

(
1

N

N∑

i=1

D′
βPmiQmiS0 −D′

βS0

)
δc

− lim
N→∞

(
1

N

N∑

i=1

D′
βSm

(
S′
mQmiSm

)−1
S′
mQmiS0Π

′
mΠm −D′

βS0Π
′
mΠm

)
δc

= lim
N→∞

(
1

N

N∑

i=1

D′
βPmiQmiS0 −D′

βS0

)
δc

= D′
βBmδc,

where the first equality holds by the fact that SmAm = lim
N→∞

1
N

∑N
i=1 Sm (S′

mQmiSm)−1
S′
mQmiS0(Ik2−

Π′
mΠm) = lim

N→∞

1
N

∑N
i=1 PmiQmiS0(Ik2 − Π′

mΠm) and the third equality holds by the fact that

S0Π
′
m = Sm(0′k1×k2m

, Ik2m)
′.
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When Σi is a diagonal matrix for all i, Am is op(1) as N,T → ∞, which is shown in Corollary

3.1. Therefore, the bias term becomes D′
β2
(Ik2 − Π′

mΠm)δc = D′
βS0(Ik2 − Π′

mΠm)δc. When

Assumption 3.6 holds, Vm = op(1) as N,T → ∞ and
√
N/T → 0 as we discussed in Corollary 3.2.

This completes the proof.

Proof of Theorem 5.1. By Assumptions 3.1–3.5 and the result from Theorem 3.1, we have

√
N(µ(β̂MG,m)− µ(βm)) = D̂′

βSm

√
N(β̂MG,m − βm) + op(1)

= D̂′
β

1√
N

N∑

i=1

(
SmR̂miQ̂miηi + SmR̂miΣ̂mi(ιi − ῑ)

+ P̂miQ̂miS0(I−Π′
mΠm)∆−1

NT δ
)
+Op

(
1√
N

)
+Op

(
1√
T

)
.

Therefore, by (A.8) and the fact that the weights are non-random, it follows that

√
N (µ̂(w)− µ(β)) =

M∑

m=1

wm

(
µ(β̂MG,m)− µ(βm) + µ(βm)− µ(β)

)

=

M∑

m=1

wmD̂′
β

1√
N

N∑

i=1

SmR̂miQ̂miηi +

M∑

m=1

wmD̂′
β

1√
N

N∑

i=1

SmR̂miΣ̂mi(ιi − ῑ)

+

M∑

m=1

wmD̂′
β

1

N

N∑

i=1

P̂miQ̂miS0(I−Π′
mΠm)

√
N∆−1

NTδ

−
M∑

m=1

wmD′
βS0(I −Π′

mΠm)
√
N∆−1

NTδ +O

(
1

∆NT

)
+Op

(
1√
N

)
+Op

(
1√
T

)

≡ L1 + L2 + L3 + L4 +O

(
1

∆NT

)
+Op

(
1√
N

)
+Op

(
1√
T

)
.

For L1, by Assumption 3.4, as N,T → ∞ jointly, we have

L1 = D̂′
β

1√
N

N∑

i=1

(
M∑

m=1

wmSmR̂miQ̂mi

)
ηi

d−→ N(0,Ξu(w)) ≡ U(w), (A.10)

where

Ξu(w) = lim
N→∞

1

N

N∑

i=1

D′
β

(
M∑

m=1

wmSmRmiQmi

)
Ωβ

(
M∑

m=1

wmQ′
miR

′
miS

′
m

)
Dβ.
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Note that Ξu(w) can be rewritten as

Ξu(w) = lim
N→∞

1

N

N∑

i=1

D′
β

M∑

m=1

w2
mSmRmiQmiΩβQ

′
miR

′
miS

′
mDβ

+ 2 lim
N→∞

1

N

N∑

i=1

D′
β

∑∑

m6=ℓ

wmwℓSmRmiQmiΩβQ
′
ℓiR

′
ℓiS

′
ℓDβ

= D′
β

M∑

m=1

w2
mSm lim

N→∞

1

N

N∑

i=1

(
RmiQmiΩβQ

′
miR

′
mi

)
S′
mDβ

+ 2D′
β

∑∑

m6=ℓ

wmwℓSm lim
N→∞

1

N

N∑

i=1

(
RmiQmiΩβQ

′
ℓiR

′
ℓi

)
S′
ℓDβ

=

M∑

m=1

w2
mD′

βSmΞumS′
mDβ + 2

∑∑

m6=ℓ

wmwℓD
′
βSmΞu,mℓS

′
ℓDβ.

Similarly, by Assumption 3.3, as N,T → ∞ jointly, we have

L2 = D̂′
β

1√
N

N∑

i=1

(
M∑

m=1

wmSmR̂miΣ̂mi

)
(ιi − ῑ)

d−→ N(0,Ξv(w)) ≡ V(w), (A.11)

where

Ξv(w) =

M∑

m=1

w2
mD′

βSmΞvmS′
mDβ + 2

∑∑

m6=ℓ

wmwℓD
′
βSmΞv,mℓS

′
ℓDβ.

For L3 and L4, by Assumption 3.5, we have

L3 + L4 =

M∑

m=1

wm

(
D̂′

β

1

N

N∑

i=1

P̂miQ̂miS0(I −Π′
mΠm)−D′

βS0(I−Π′
mΠm)

)
√
N∆−1

NTδ

p−→
M∑

m=1

wm

(
D′

β lim
N→∞

1

N

N∑

i=1

PmiQmiS0(I−Π′
mΠm)−D′

βS0(I −Π′
mΠm)

)
δc

=

M∑

m=1

wmD′
β lim

N→∞

1

N

N∑

i=1

(PmiQmi − Ik)S0(I−Π′
mΠm)δc

= D′
β

M∑

m=1

wm lim
N→∞

1

N

N∑

i=1

(PmiQmi − Ik)S0δc

= D′
βB(w)δc. (A.12)

where B(w) =
∑M

m=1wmBm, Bm = lim
N→∞

1
N

∑N
i=1 ((PmiQmi − Ik)S0), and the third equality holds

by the fact that S0Π
′
m = Sm(0′k1×k2m

, Ik2m)
′.

Since ηi and ιi are mutually independent by Assumption 3.4, U(w) and V(w) are two stochas-

tically independent normal random vectors. Combining (A.10)–(A.12), we have

√
N (µ̂(w)− µ(β))

d−→ D′
βB(w)δc +V(w) +U(w) ∼ N(D′

βB(w)δc,Ξu(w) +Ξv(w)).

This completes the proof.
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Proof of Theorem 5.2. We first show the limiting distribution of Ψ̂mℓ. By Equation (3.1), we

have β̂MG,f
p−→ β, which implies that D̂β

p−→ Dβ. By Lemma C.1 (i) and the continuous

mapping theorem, we have B̂m
p−→ Bm, Also, by Lemma 5.1, we have Ξ̂mℓ

p−→ Ξmℓ. Recall that

δ̂c
d−→ Zδ ∼ N(δc,S

′
0ΞfS0). Then by the application of Slutsky’s theorem, it follows that

Ψ̂mℓ = D̂′
β

(
B̂mδ̂cδ

′
cB̂

′
ℓ + SmΞ̂mℓS

′
ℓ

)
D̂β

d−→ D′
β

(
Bm(ZδZ

′
δ − S′

0ΞfS0)B
′
ℓ + SmΞmℓS

′
ℓ

)
Dβ = Ψ∗

mℓ.

We next show the limiting distribution of w′Ψ̂w. Using the results from the proof of Theorem

5.1 and the Cramer-Wold Theorem, we can show that

(
1√
N

N∑

i=1

R1iQ1iηi, ...,
1√
N

N∑

i=1

RMiQMiηi

)′

d−→ (U1, ...,UM )′. (A.13)

Similarly, we have

(
1√
N

N∑

i=1

R1iΣ1i(ιi − ῑ), ...,
1√
N

N∑

i=1

RMiΣMi(ιi − ῑ)

)′

d−→ (V1, ...,VM )′. (A.14)

Note that Zδ = δc+S′
0Uf +S′

0Vf by Equations (3.1) and (4.5). Since all of Ψ∗
mℓ can be expressed

in terms of the normal random vectors Um and Vm, there is joint convergence in distribution of all

Ψ̂mℓ to Ψ∗
mℓ. Hence, it follows that w′Ψ̂w

d−→ w′Ψ∗w. Therefore, by Theorem 3.2.2 of Van der

Vaart and Wellner (1996) or Theorem 2.7 of Kim and Pollard (1990), the minimizer ŵ converges

in distribution to the minimizer of w′Ψ∗w, which is w∗.

We now show the asymptotic distribution of the plug-in averaging estimator. Note that both

Λm and w∗
m can be expressed in terms of the normal random vectors Um and Vm. Thus, there is

joint convergence in distribution of all µ̂m and ŵm. Thus, it follows that

√
N(µ(ŵ)− µ(β)) =

M∑

m=1

ŵm

√
N
(
µ(β̂MG,m)− µ(β)

)
d−→

M∑

m=1

w∗
mΛm.

This completes the proof.

B Proofs of Lemmas and Corollaries

Proof of Lemma 4.1. The argument is similar to the proof of Lemma 5.1 and we omit it for

brevity.

Proof of Lemma 5.1. From (A.1), we have

β̂mi − βmi = (X′
miMhmXmi)

−1X′
miMhm(XiS0(Ik2 −Π′

mΠm)β2i + Fγi + εi).

33



Recall that Xmi = XiSm, βmi = S′
m(β + ηi), and γi = γ + ιi. Then it follows that

β̂mi − βm = β̂mi − βmi + βmi − βm

= S′
mηi +

(
S′
m(T−1X′

iMhmXi)Sm

)−1
S′
m(T−1X′

iMhmXi)S0(Ik2 −Π′
mΠm)β2i

+
(
S′
m(T−1X′

iMhmXi)Sm

)−1
S′
m(T−1X′

iMhmF)(γ̄ + (ιi − ῑ))

+
(
S′
m(T−1X′

iMhmXi)Sm

)−1
S′
m(T−1X′

iMhmεi)

≡ K1 +K2 +K3 +K4.

By Assumptions 3.4 and 3.5, we have

K1 +K2 = S′
mηi +

(
S′
m(T−1X′

iMhmXi)Sm

)−1
S′
m(T−1X′

iMhmXi)S0(Ik2 −Π′
mΠm)∆−1

NTδ

+
(
S′
m(T−1X′

iMhmXi)Sm

)−1
S′
m(T−1X′

iMhmXi)(Ik − SmS′
m)ηi

=
(
S′
m(T−1X′

iMgmXi)Sm

)−1
S′
m(T−1X′

iMgmXi)ηi

+Op

(
1

∆NT

)
+Op

(
1

N

)
+Op

(
1√
NT

)

≡ Φ1imT +Op

(
1

∆NT

)
+Op

(
1

N

)
+Op

(
1√
NT

)
, (B.1)

where Φ1imT =
(
S′
m(T−1X′

iMgmXi)Sm

)−1
S′
m(T−1X′

iMgmXi)ηi, the first equality holds by (A.3),

and the second equality holds by Lemma C.1 (i) and (iv) and the fact that T−1X′
iMhmXi = Op(1).

For K3, we have

K3 =
(
S′
m(T−1X′

iMhmXi)Sm

)−1
S′
m(T−1X′

iMhmF)(γ̄ + (ιi − ῑ))

=
(
S′
m(T−1X′

iMgmXi)Sm

)−1
S′
m(T−1X′

iMgmF)(ιi − ῑ) +Op

(
1

N

)
+Op

(
1√
NT

)

≡ Φ2imT +Op

(
1

N

)
+Op

(
1√
NT

)
, (B.2)

where Φ2imT =
(
S′
m(T−1X′

iMgmXi)Sm

)−1
S′
m(T−1X′

iMgmF)(ιi − ῑ).

For K4, we have

K4 =
(
S′
m(T−1X′

iMhmXi)Sm

)−1
S′
m(T−1X′

iMhmεi)

=
(
S′
m(T−1X′

iMgmXi)Sm

)−1
S′
m(T−1X′

iMgmεi) +Op

(
1

N

)
+Op

(
1√
NT

)

= Op

(
1

N

)
+Op

(
1√
T

)
, (B.3)

where the last equality holds because T−1X′
iMgmεi = Op(T

−1/2).

Combining (B.1), (B.2), and (B.3), it follows that

β̂mi − βm = Φ1imT +Φ2imT +Op

(
1

N

)
+Op

(
1√
T

)
+O

(
1

∆NT

)
(B.4)
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and

1

N

N∑

i=1

(β̂mi − βm) =
1

N

N∑

i=1

Φ1imT +
1

N

N∑

i=1

Φ2imT +Op

(
1

N

)
+Op

(
1√
T

)
+O

(
1

∆NT

)
. (B.5)

By subtracting equation (B.4) from equation (B.5), we obtain

β̂mi − β̂MG,m =

(
Φ1imT − 1

N

N∑

i=1

Φ1imT

)
+

(
Φ2imT − 1

N

N∑

i=1

Φ2imT

)
+ op (1) .

By Assumptions 3.3 and 3.4, Φ1imT and Φ2imT are mutually independent. Thus, we have

1

N − 1
E

[
N∑

i=1

[(
β̂mi − β̂MG,m

)(
β̂ℓi − β̂MG,ℓ

)′]
]
= Ξmℓ + op (1) .

This completes the proof.

Proof of Corollary 3.1. From the proof of Theorem 3.1, it is easy to see that the limits of I1, I3,

I4, and I5 of (A.2) remain the same when Σi is a diagonal matrix. Thus, we only need to consider

I2. Let ξ̄2 =
1
N

∑N
i=1 ξ2i. By Assumption 3.3 and the fact that XiS0 = X2i = FΓ2i +V2i, we have

√
N(T−1X′

miMhmXiS0)(Ik2 −Π′
mΠm)β2

=
√
N
(
T−1S′

mX′
iMhm(FΓ2i +V2i)

)
(Ik2 −Π′

mΠm)β2

=
√
N
(
T−1S′

mX′
iMhmF(Γ̄2 + ξ2i − ξ̄2)

)
(Ik2 −Π′

mΠm)β2

+
(
T−1S′

mX′
iMhmV2i

)
(Ik2 −Π′

mΠm)
√
N∆−1

NTδ

=
(
T−1S′

mX′
iMhmF(ξ2i − ξ̄2)

)
(Ik2 −Π′

mΠm)
√
N∆−1

NTδ +Op

(
1√
N

)
+Op

(
1√
T

)
,

where the last equality holds by Lemma C.1 (v) and the facts that
√
N(T−1X′

iMhmF)Γ̄2(Ik2 −
Π′

mΠm)β2 = Op(N
−1/2)+Op(T

−1/2),
(
T−1X′

iMhmV2i

)
(Ik2 −Π′

mΠm) =
(
T−1X′

iMgmV2i

)
(Ik2 −

Π′
mΠm)+Op(N

−1)+Op((NT )−1/2) , and
(
T−1X′

iMgmV2i

)
(Ik2−Π′

mΠm) = Op(T
−1/2). Therefore,

by Lemma C.1 (i) and (iii), the second term of (A.2) is

I2 =
1

N

N∑

i=1

(
S′
m(T−1X′

iMgmXi)Sm

)−1
S′
m

(
T−1X′

iMgmF(ξ2i − ξ̄2)
)
(Ik2 −Π′

mΠm)
√
N∆−1

NTδ

+Op

(
1√
N

)
+Op

(
1√
T

)

= Op

(
1√
N

)
+Op

(
1√
T

)
,

where the last equality holds by the fact that (ξ2i − ξ̄2)(Ik2 −Π′
mΠm) is independent of S′

mXi for

all i. This completes the proof.

35



Proof of Corollary 3.2. We first consider the case that km +1 > r when Assumption 3.6 holds.

We follow the same strategy used in Karabiyik, Reese, and Westerlund (2016). For the submodel

m, we can partition H̄m as

H̄m = [FC̄m,r,FC̄m,−r] + [Ūm,r, Ūm,−r],

where C̄m,r is full rank. We further define

Jm = [Jm,r,Jm,−r] =

[
C̄−1

m,r −C̄−1
m,rC̄m,−r

0 I

]
and DN =

[
I 0

0
√
NI

]
,

where DN is a normalization matrix.

Multiplying H̄m with Jm and DN , we have

H̃m = H̄mJmDN

= FC̄mJmDN + ŪmJmDN

= [F,0] + [Ūm,rC̄
−1
m,r, Ūm,−r − Ūm,rC̄

−1
m,rC̄m,−r]

= F0 + Ũm.

The following facts will be used through this part frequently, including Mhm = M
h̃m

, M
h̃m

=

I − H̃m(H̃′
mH̃m)−H̃′

m, Mf0 = I − F0(F0′F0)−F0′, Ũm,−r =
√
NŪmJm,−r, Ũm,r = ŪmJm,r, and

the following results used in Karabiyik, Reese, and Westerlund (2016)

||T−1Ū′
mH̃m|| = Op(N

−1/2),

||T−1V′
iH̃m|| = Op(T

−1/2) +Op(N
−1/2),

||T−1H̃′
mεi|| = Op(T

−1/2) +Op(N
−1/2),

||(T−1H̃′
mH̃m)− −Σf0

−|| = Op(T
−1/2) +Op(N

−1/2).

where

Σf0 =

[
T−1F′F 0

0 T−1Ũ′
m,−rŨm,−r

]
.

Also, by a similar argument to Pesaran (2006), we have

||T−1V′
iŪm|| = Op(N

−1) +Op((NT )−1/2),

||T−1Ū′
mŪm|| = Op(N

−1),

||T−1V̄′
iF|| = Op(T

−1/2),

||T−1F′Ūm|| = Op((NT )−1/2).

Therefore, Lemma C.1 (ii) becomes

T−1X′
iMhmεi = T−1X′

iMh̃m
εi

= T−1(V′
i − ΓiC̄

′−
m Ū′

m)M
h̃m

εi

= T−1(V′
i − ΓiC̄

′−
m Ū′

m)εi − T−1(V′
i − ΓiC̄

′−
m Ū′

m)Pf0εi

+ T−1(V′
i − ΓiC̄

′−
m Ū′

m)(M
h̃m

−Mf0)εi

= T−1X′
iMf0εi + T−1V′

i(Mh̃m
−Mf0)εi − ΓiC̄

′−
m Ū′

m(M
h̃m

−Mf0)εi,
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where C̄
′−
m = C̄′

m(C̄mC̄′
m)−1. We can further decompose T−1V′

i(Mh̃m
−Mf0)εi as following

T−1V′
i(Mh̃m

−Mf0)εi = T−1V′
iŨm,−r

(
T−1Ũ′

m,−rŨm,−r

)−
T−1Ũ′

m,−rεi

+ T−1V′
iŨm,r

(
T−1F′F

)−
T−1Ũ′

m,rεi

+ T−1V′
iŨm,r

(
T−1F′F

)−
T−1F′εi

+ T−1V′
iF
(
T−1F′F

)−
T−1Ũ′

m,rεi

+ T−1V′
iH̃m

((
T−1H̃′

mH̃m

)− −Σf0
−
)
T−1H̃′

mεi.

Investigating each term of the above equation, we have

||T−1V′
iŨm,−r

(
T−1Ũ′

m,−rŨm,−r

)−
T−1Ũ′

m,−rεi||
≤ N ||T−1V′

iŪm||︸ ︷︷ ︸
Op(N−1)+Op((NT )−1/2)

||
(
T−1Ũ′

m,−rŨm,−r

)−||
︸ ︷︷ ︸

Op(1)

||T−1Ū′
mεi||︸ ︷︷ ︸

Op(N−1)+Op((NT )−1/2)

||Jm,−r||2︸ ︷︷ ︸
Op(1)

= Op(N
−1) +Op(T

−1) +Op((NT )−1/2),

||T−1V′
iŨm,r

(
T−1F′F

)−
T−1Ũ′

m,rεi|| ≤ ||T−1V′
iŪm|| ||

(
T−1F′F

)− || ||T−1Ū′
mεi|| ||Jm,r||2

= Op(N
−2) +Op((NT )−1) +Op(N

−3/2T−1/2),

||T−1V′
iŨm,r

(
T−1F′F

)−
T−1F′εi|| ≤ ||T−1V′

iŪm|| ||
(
T−1F′F

)− || ||T−1F′εi|| ||Jm,r||
= Op(N

−1T−1/2) +Op(N
−1/2T−1),

||T−1V′
iF
(
T−1F′F

)−
T−1Ũ′

m,rεi|| ≤ ||T−1V′
iF|| ||

(
T−1F′F

)− || ||T−1Ū′
mεi|| ||Jm,r||

= Op(N
−1T−1/2) +Op(N

−1/2T−1),

||T−1V′
iH̃m

((
T−1H̃′

mH̃m

)−
−Σf0

−

)
T−1H̃′

mεi||

≤ ||V′
iH̃m|| ||

(
T−1H̃′

mH̃m

)−
−Σf0

−|| ||T−1H̃′
mεi||

= Op(N
−3/2) +Op(T

−3/2) +Op(N
−1T−1/2) +Op(N

−1/2T−1).

Therefore, it follows that T−1V′
i(Mh̃m

− Mf0)εi = Op(N
−1) + Op(T

−1) + Op((NT )−1/2). By a

similar argument, we have

T−1Ū′
m(M

h̃m
−Mf0)Ūm = Op(N

−1),

T−1V′
i(Mh̃m

−Mf0)Ūm = Op(N
−1) +Op((NT )−1/2),

T−1ε′i(Mh̃m
−Mf0)Ūm = Op(N

−1) +Op((NT )−1/2).

Therefore, we can rewrite (i) and (iii) of Lemma C.1 as

Σ̂mi = T−1X′
iMh̃m

F = Op(N
−1) +Op((NT )−1/2),

Q̂mi = T−1X′
iMh̃m

Xi = T−1V′
iMf0Vi +Op(N

−1) +Op(T
−1) +Op((NT )−1/2)

= T−1V′
iVi +Op(N

−1) +Op(T
−1) +Op((NT )−1/2)

= Σi +Op(N
−1) +Op(T

−1/2).
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Thus, the fourth and fifth terms of (A.2) become

I4 =
1√
N

N∑

i=1

(S′
m(T−1X′

iMhmXi)Sm)−1S′
m(T−1X′

iMhmF)γi

=
1√
N

N∑

i=1

(S′
m(T−1X′

iMh̃m
Xi)Sm)−1S′

m(T−1X′
iMh̃m

F)γi

= Op

(
1√
N

)
+Op

(
1√
T

)
.

and

I5 =
1√
N

N∑

i=1

(S′
m(T−1X′

iMhmXi)Sm)−1S′
mT−1X′

iMhmεi

=
1√
N

N∑

i=1

(S′
m(T−1X′

iMh̃m
Xi)Sm)−1S′

mT−1X′
iMh̃m

εi

=
1

N

N∑

i=1

(S′
m(T−1X′

iMh̃m
Xi)Sm)−1S′

m

√
N

T
X′

iMf0εi

+Op(T
−1N1/2) +Op(N

−1/2) +Op(T
−1/2)

= Op(T
−1N1/2) +Op(N

−1/2) +Op(T
−1/2).

We now consider the case that km + 1 = r when Assumption 3.6 holds. In this case, we have

Mgm = IT−Ḡm(Ḡ′
mḠm)−Ḡ′

m = IT−F(F′F)−F′ = Mf . Thus, it follows thatMgmF = MfF = 0.

Therefore, Lemma C.1 (iii) becomes

T−1X′
iMhmF = T−1X′

iMgmF+Op

(
1

N

)
+Op

(
1√
NT

)
= Op

(
1

N

)
+Op

(
1√
NT

)
.

Similarly, the fourth term of (A.2) becomes

I4 =
1√
N

N∑

i=1

(S′
m(T−1X′

iMhmXi)Sm)−1S′
m(T−1X′

iMhmF)γi

=
1√
N

N∑

i=1

(S′
m(T−1X′

iMfXi)Sm)−1S′
m(T−1X′

iMfF)γi +Op

(
1√
N

)
+Op

(
1√
T

)

= Op

(
1√
N

)
+Op

(
1√
T

)
.

Also, the remaining terms of (A.2) have the same limits as shown in the proof of Theorem 3.1.

Furthermore, when Assumption 3.6 holds, we can show that Qmi = p limT→∞(X′
iMgmXi) = Σi

since

T−1X′
iMfXi = T−1V′

iMfVi

= T−1V′
iVi − (T−1V′

iF)
(
T−1F′F

)−
(T−1F′Vi)

= T−1V′
iVi +Op

(
T−1

)
,

38



where the last equality holds by the facts that T−1V′
iF = Op(T

−1/2) and T−1F′F = Op(1). This

completes the proof.

Proof of Corollary 3.3. When the rank condition is satisfied for the mth model, the asymptotic

variance of the mth model is

Ξum = lim
N→∞

1

N

N∑

i=1

(
S′
mΣiSm

)−1
S′
mΣiΩβΣ

′
iSm

(
S′
mΣiSm

)−1
.

Since Ω−1
β ≥ 0, we have Ω−1

β = GG′. Let Gm = S′
mG and Hi = G−1Σ′

iSm. Thus, we have

S′
mΣiSm(S′

mΣiΩβΣ
′
iSm)−1S′

mΣiSm

= S′
mGG−1ΣiSm(S′

mΣiG
′−1

G−1Σ′
iSm)−1S′

mΣiG
′−1

G′Sm

= GmHi(H
′
iHi)

−1H′
iG

′
m.

We now compare the diagonal element of Ωβ and Ξum. Let ej be a selection vector where the jth

element is one and others are zeros. Let ejm = S′
mej. For 1 ≤ j ≤ k1, the jth diagonal elements

are e′jΩ
−1
β ej = e′jmS

′
mGG′Smejm = e′jmGmG′

mejm and e′jmGmHi(H
′
iHi)

−1H′
iG

′
mejm for the full

model andmth submodel, respectively. Note that e′jmGmG′
mejm−e′jmGmHi(H

′
iHi)

−1H′
iG

′
mejm ≥

0, which implies that the variance of the core regressor in the full model is smaller than those in

other submodels. This completes the proof.

Proof of Corollary 3.4. From the proof of Theorem 3.1, it is easy to see that the limits of I2, I4,

and I5 of (A.2) remain the same because we still can obtain E||ūmt||2 = O(N−1) when Assumption

3.5′ hold. Also, by a similar argument, we can show that I1 converges to Ũm ∼ N(0,S′
mΩβSm)

where Ωβ is a block diagonal matrix with two blocks Ωβ1
and 0k2×k2 and I3 converges to zero

instead of a non-degenerated distribution. This completes the proof.

39



C Supplementary Lemmas and Their Proofs

Lemma C.1. Suppose that Assumptions 3.1–3.5 hold. Then we have

(i)
X′

iMhmXi

T
=

X′
iMgmXi

T
+Op

(
1

N

)
+Op

(
1√
NT

)
.

(ii)
X′

iMhmεi

T
=

X′
iMgmεi

T
+Op

(
1

N

)
+Op

(
1√
NT

)
.

(iii)
X′

iMhmF

T
=

X′
iMgmF

T
+Op

(
1

N

)
+Op

(
1√
NT

)
.

(iv)

√
NX′

iMhmF

T
γ̄ = Op

(
1√
N

)
+Op

(
1√
T

)
.

(v)

√
NX′

iMhmF

T
Γ̄2(Ik2 −Π′

mΠm)β2 = Op

(
1√
N

)
+Op

(
1√
T

)
.

Proof of Lemma C.1. The proofs of (i)-(iii) follow the proof structure adopted in Pesaran (2006).

We highlight in the proofs that differ from Pesaran (2006), while steps that are similar to Pesaran

(2006) are sketched. Recall that for the submodel m, we have the following system of equations



yit

x1it

Πmx2it


 =




1 β′
1i β′

2iΠ
′
m

0 Ik1 0

0 0 Ik2m







γ ′
i + β′

2i(Ik2 −Π′
mΠm)Γ′

2i

Γ′
1i

ΠmΓ′
2i


 ft +




εit + β′
1iv1it + β′

2iv2it

v1it

Πmv2it


 .

After taking the cross-sectional averages under the equal weights, we have h̄mt = C̄′
mft + ūmt.

Stacking all observations over t, we have

[ȳ, X̄1, X̄2Π
′
m] = F[γ̄ + Γ2β2 + Γ1β1, Γ̄1, Γ̄2Π

′
m] + Ūm

= FC̄m + Ūm = Ḡm + Ūm.

We show (i)-(iii) by establishing that E||ūmt||2 = O(N−1) with Assumption 3.5. Note that the

local to zero assumption is imposed on β2 only. Thus, by Lemma 1 of Pesaran (2006), we have

Var(N−1
∑N

i=1 εit) = O(N−1), Var(N−1
∑N

i=1 v1it) = O(N−1), Var(N−1
∑N

i=1Πmv2it) = O(N−1),

and Var(N−1
∑N

i=1 β
′
1iv1it) = O(N−1).

For Var(N−1
∑N

i=1 β
′
2iv2it), note that

Var

(
1

N

N∑

i=1

β′
2iv2it

)
=

1

N2
Var

(
N∑

i=1

(β2 + η2i)
′v2it

)

=
1

N2

N∑

i=1

E(β′
2Σiβ2) +

1

N2
E(η′

2iΣiη2i)

≤ 1

N2∆2
NT

δ′δ

N∑

i=1

λmax(Σi) +
1

N2

N∑

i=1

E(η′
2iη2i)λmax(Σi)

= O

(
1

N

)
+O

(
1

N∆2
NT

)
,
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where λmax(Σi) denotes the largest eigenvalue of Σi. Also, we have

Cov

(
1

N

N∑

i=1

εit +
1

N

N∑

i=1

β′
1iv1it +

1

N

N∑

i=1

β′
2iv2it,

1

N

N∑

i=1

v1it

)

=
1

N2

N∑

i=1

E(β′
1iv1itv

′
1it + β′

2iv2itv
′
1it)

= O

(
1

N

)
+O

(
1

N∆NT

)
,

where the last equality holds because the random deviation of β2 is independent of v1it and v2it.

Similarly, we have Cov
(
N−1

∑N
i=1 εit +N−1

∑N
i=1 β

′
1iv1it +N−1

∑N
i=1 β

′
2iv2it, N

−1
∑N

i=1 v2it

)
=

O
(
N−1

)
+O

(
(N∆NT )

−1
)
. Combining these results, we have Var(ūmt) = O(N−1) no matter ∆−1

NT

is O(1) or ∆−1
NT converges to zero at any rate. Therefore, we have E||ūmt||2 = O(N−1). Thus, by

Lemmas 2 and 3 of Pesaran (2006) with the above results, we have (i)-(iii).

We now show (iv) and (v). Note that Mgm = IT − Ḡm(Ḡ′
mḠm)−Ḡ′

m and MgmḠm = 0. Then,

we have MgmF(γ̄ + Γ2β2 + Γ1β1) = 0, MgmFΓ̄1 = 0, and MgmFΓ̄2Π
′
m = 0. Also,

X′
iMhmF

T
(γ̄ + Γ2β2 + Γ1β1) = Op

(
1

N

)
+Op

(
1√
NT

)
,

X′
iMhmF

T
Γ̄1 = Op

(
1

N

)
+Op

(
1√
NT

)
,

X′
iMhmF

T
Γ̄2Π

′
m = Op

(
1

N

)
+Op

(
1√
NT

)
.

By Assumption 3.5 and the above results, we have
√
NX′

iMhmF

T
(γ̄ + Γ2β2 + Γ1β1)

=

√
NX′

iMhmF

T

(
γ̄ + Γ̄2β2 +

1

N

N∑

i=1

Γ2iη2i + Γ̄1β1 +
1

N

N∑

i=1

Γ1iη1i

)

=

√
NX′

iMhmF

T

(
γ̄ + Γ̄2(Ik2 −Π′

mΠm)β2 + Γ̄2Π
′
mΠmβ2 +

1

N

N∑

i=1

Γ2iη2i + Γ̄1β1 +
1

N

N∑

i=1

Γ1iη1i

)

=

√
NX′

iMhmF

T

(
γ̄ + Γ̄2(Ik2 −Π′

mΠm)β2 +
1

N

N∑

i=1

Γ2iη2i +
1

N

N∑

i=1

Γ1iη1i

)

= Op

(
1√
N

)
+Op

(
1√
T

)
.

Since 1
N

∑N
i=1Γ2iη2i = Op

(
N−1/2

)
and 1

N

∑N
i=1Γ1iη1i = Op(N

−1/2), it follows that
√
NX′

iMhmF

T
γ̄ = Op

(
1√
N

)
+Op

(
1√
T

)
.

By a similar argument, we have
√
NX′

iMhmF

T
Γ̄2(Ik2 −Π′

mΠm)β2 = Op

(
1√
N

)
+Op

(
1√
T

)
.

This completes the proof.
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