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Abstract

While most treatment evaluations focus on binary interventions, a growing literature also

considers continuously distributed treatments. We propose a Cramér-von Mises-type test for

testing whether the mean potential outcome given a specific treatment has a weakly monotonic

relationship with the treatment dose under unconfoundedness. In a nonseparable structural model,

applying our method amounts to testing the monotonicity of the average structural function in the

continuous variable of interest. To flexibly control for a possibly high-dimensional set of covariates

in our testing approach, we propose a double debiased machine learning estimator that accounts

for covariates in a data-driven way. We show that the proposed test controls asymptotic size and is

consistent against any fixed alternative. These theoretical findings are supported by Monte-Carlo

simulations. As an empirical illustration, we apply our test to evaluate the Job Corps program and

reject a weakly negative relationship between the treatment (hours in academic and vocational

training) and labor market performance among relatively low treatment values.

JEL classification: C01, C12, C21

Keywords: Average dose response functions, average structural function, continuous treatment

models, doubly robust, high dimension, hypothesis testing, machine learning, treatment mono-

tonicity.



1 Introduction

Even though many studies on treatment or policy evaluation investigate the effects of binary or

discrete interventions, a growing literature considers the assessment of continuously distributed

treatments, e.g., hours spent in a training program whose effect on labor market performance

is of interest (Flores et al., 2012; Kluve et al., 2012). Other examples include the efficacy of

political advertisements on campaign contributions in Fong et al. (2018), nurse staffing on hospital

readmissions penalties in Kennedy et al. (2017), among others. Most contributions like Imbens

(2000), Hirano and Imbens (2004), Flores (2007), Flores et al. (2012), Galvao andWang (2015), Lee

(2018) and Colangelo and Lee (2022) focus on the identification and estimation of the average dose

response function (ADF), which corresponds to the mean potential outcome as a function of the

treatment dose. This permits assessing the average treatment effect (ATE) as the difference in the

ADF assessed at two distinct treatment doses of interest, while Hirano and Imbens (2004), Flores

et al. (2012), and Colangelo and Lee (2022) also consider the marginal effect of slightly increasing

the treatment dose, which is the derivative of the ADF. Rather than considering the total effect

of the treatment, Huber et al. (2020) suggest a causal mediation approach to disentangle the ATE

into its direct effect and indirect effect operating through intermediate variables or mediators to

assess the causal mechanisms of the treatment.

In this paper, we propose a method for testing whether the ADF has a weakly monotonic

relationship with (i.e., is weakly increasing or decreasing in) the treatment dose under uncon-

foundedness, implying that a confounder of the treatment-outcome relation can be controlled

for by observed covariates. Such a test appears interesting for verifying shape restrictions, e.g.,

whether increasing the treatment dose always has a non-negative effect, no matter what the base-

line level of treatment is. Moreover, the treatment effect model is known to be equivalent to

a nonseparable structural model of a nonseparable outcome with a general disturbance, as for

instance Imbens and Newey (2009) and Lee (2018). In this case, the ADF corresponds to the

average structural function in Blundell and Powell (2003). Therefore, our test can be applied to

testing monotonicity of the average structural function in a nonseparable structural model under

a conditional independence assumption. We also extend our test for the conditional ADF given a

subset of the covariates.

To construct our test, we first transform the null hypothesis of a monotonic relationship to

countably many moment inequalities based on the generalized instrumental function approach of

Hsu et al. (2019) and Hsu and Shen (2020) that is a generalization of the instrumental function

approach in Andrews and Shi (2013, 2014). We construct a Cramér-von Mises-type test statistic

based on the estimated moments, which are shown to converge to a Gaussian process at the
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regular root-n rate. Importantly, by making use of moment inequalities, our method does not

rely on the nonparametric estimation of the ADF or the partial effects, which would converge at

slower nonparametric rates. To compute the critical values for our test, we apply a multiplier

bootstrap method and the generalized moment selection (GMS) approach of Andrews and Shi

(2013, 2014). We demonstrate that our test controls asymptotic size and is consistent against any

fixed alternative.

To employ nonparametric or machine learning estimators in the presence of possibly high-

dimensional nuisance parameters, we propose a double debiased machine learning (DML) estima-

tor. Utilizing a doubly robust moment function based on a Neyman-type orthogonal score and

cross-fitting, we give high-level conditions under which the nuisance function estimators do not

affect the first-order large sample distribution of the DML estimator. Specifically, we give the

high-level conditions on the standard mean-squared convergence rates of the first-step estimators,

as the semiparametric models in Chernozhukov et al. (2018). The first-step estimators for the

conditional expectation function and the conditional density can be kernel and series estimators,

as well as modern ML methods, such as Lasso and deep neural networks. See Chernozhukov et al.

(2018) and Athey and Imbens (2019) for potential ML methods, such as ridge, boosted trees,

and various ensembles of these methods. As each ML method has its strengths and weaknesses

depending on the data generating process and applications, it is desirable to flexibly employ var-

ious nuisance estimators. High-dimensional control variables are accommodated via the nuisance

estimators; for example, Lasso allows the dimension of X to grow with the sample size.

Our paper is related to a growing literature on testing monotonicity in regression problems such

as Bowman et al. (1998), Ghosal et al. (2000), Gijbels et al. (2000), Hall and Heckman (2000),

Dümbgen and Spokoiny (2001), Durot (2003), Baraud et al. (2005), Wang and Meyer (2011),

Chetverikov (2019) and Hsu et al. (2019). The main difference between our GMS method and

the previously suggested tests is that we rely on a two-step estimation procedure when computing

the moments, with the first step consisting of estimating the generalized propensity score, i.e., the

conditional density of a treatment dose given the covariates, and/or the conditional mean function.

For this reason, it is necessary to take into account the behavior of the first step when we derive the

limiting behavior of the estimated moment inequalities underlying our test. Rothenhäusler and

Yu (2019) provide inference theory for a different incremental causal effect where the continuous

treatment is slightly shifted across the whole population, while our average dose response function

sets the continuous treatment at a given value across the whole population. A positive incremental

causal effect does not imply that the average dose response function is increasing.

An alternative approach is to conduct uniform inference for the average dose response function

µ(t) or the average partial effect dµ(t)/dt over a range of t; for example, linear functionals of
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the conditional mean function using series in Belloni et al. (2015) and partitioning-based series in

Cattaneo et al. (2020), binscatter for a partially linear model in Cattaneo et al. (2022), the Lasso

estimator in Su et al. (2019) and DML estimator in Colangelo and Lee (2022) for a nonparametric

nonseparable model. In particular, we compare our test with Su et al. (2019) in the simulation

study. The supremum-type test is based on a uniform confidence band of dµ(t)/dt, so its power

can be driven by a large deviation of the null hypothesis at a specific point t. Our integral-type

test generally has better power if the deviation of the null is more evenly spaced, e.g., when the

data generating process with the violation of the null is the same for all t. Moreover, our test can

have non-trivial local power against some n−1/2 local alternatives as in Hsu et al. (2019), while

the supremum-type test based on nonparametric estimators of dµ(t)/dt does not.

We investigate the finite sample behavior of the proposed test approach in a simulation study.

As an empirical illustration, we apply our test to data from an experimental study on the Job

Corps (see Schochet et al. (2001) and Schochet et al. (2008)) a program aimed at increasing

the human capital of youths from disadvantaged backgrounds in the U.S. We consider hours in

academic and vocational training in the first year of the program as the continuous treatment, and

investigate its association with several labor market outcomes: weekly earnings in the fourth year,

earnings and hours worked per week in quarter 16, and a binary employment indicator four years

after assignment. For all outcomes, our test clearly rejects weakly negative monotonicity in the

treatment when considering treatment doses between 40 and 3000 hours of training. In contrast,

weakly positive monotonicity is not refuted at conventional levels of statistical significance. When,

however, splitting the treatment range into three brackets of 40 to 1000, 1000 to 2000, and 2000

to 3000 hours, the test points to a violation of weakly negative monotonicity only in the lowest

treatment bracket. In the remaining brackets, which have larger treatment values, we reject neither

weakly positive nor weakly negative monotonicity. Our results are consistent with a concave ADF

as, for instance, found in Flores et al. (2012), suggesting that the marginal effect of training on

labor market performance is positive for relatively low treatment doses but decreases as hours of

training increase. A potential explanation could be that participants attending more training in

the first year might be induced to attain more education in the following years rather than to

participate in the labor market.

The paper is organized as follows. Section 2 formulates the hypothesis of weak monotonicity

to be tested. Section 3 proposes monotonicity tests under DML estimation. Section 4 presents a

Monte-Carlo simulation and discusses how to choose the tuning parameters of the test in practice.

Section 5 provides an empirical application to Job Corps data. Section 6 adapts the method to

testing monotonicity with conditional mean potential outcomes given observed covariates. Section
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7 concludes. The technical proofs are relegated to the Appendix.1

2 Monotonicity of Continuous Treatment Effect

We consider a nonparametric and model-free outcome equation Y = g(T,X, ε). No functional form

assumption is imposed on the unobserved disturbances ε, such as restrictions on dimensionality,

monotonicity, or separability. Let Y (t) = g(t,X, ε) denote the potential outcome corresponding to

the level of treatment intensity t ∈ T , where T = [a, b] with −∞ < a < b <∞. Hirano and Imbens

(2004) call Y (t) the unit-level dose response function. Let µ(t) = E[Y (t)] =
∫
g(t,X, ε)dFXε for

t ∈ T denote the expected value of the potential outcome, also known as the average dose response

function (ADF) or the average structural function. In this paper, we test weather the ADF is

weakly increasing in the treatment intensity within a specific range. We define the null hypothesis

of interest as

H0 : µ(t1) ≥ µ(t2), for all t1 ≥ t2, for t1, t2 ∈ [tℓ, tu], (2.1)

where a ≤ tℓ < tu ≤ b so that [tℓ, tu] is a convex and compact subset of [a, b]. Without loss of

generality, we assume that [tℓ, tu] = [0, 1].2

We apply the generalized instrumental function approach of Hsu et al. (2019) and Hsu and

Shen (2020) to transform H0 in (2.1) to countably many moment inequalities without loss of

information. Specifically, suppose that µ(t) is a continuous function on t = [0, 1] and h(t) is a

positive weighting function such that
∫ 1

0
h(t)dt <∞. Then by Lemma 2.1 of Hsu and Shen (2020),

H0 in (2.1) is equivalent to

∫ t2+q−1

t2
µ(s)h(s)ds∫ t2+q−1

t2
h(s)ds

−
∫ t1+q−1

t1
µ(s)h(s)ds∫ t1+q−1

t1
h(s)ds

≤ 0, or (2.2)

∫ t2+q−1

t2

µ(s)h(s)ds ·
∫ t1+q−1

t1

h(s)ds−
∫ t1+q−1

t1

µ(s)h(s)ds ·
∫ t2+q−1

t2

h(s)ds ≤ 0 (2.3)

for any q = 2, · · · , and for any t1 ≥ t2 such that t1, t2 ∈ {0, 1/q, 2/q, · · · , 1−1/q}. Equations (2.2)
and (2.3) hold by the fact that if a function is non-decreasing, then its weighted average over an

interval will be non-decreasing as well when the interval moves to the right. In addition, following

Hsu et al. (2019), Equations (2.2) and (2.3) contain the same information as the null hypothesis.

1An old version of this paper contains monotonicity tests under nonparametric and parametric estimations of
the generalized treatment propensity score, which is available upon request.

2If [tℓ, tu] is not [0, 1], we can always apply an affine transformation ϕ on t so that ϕ(tℓ) = 0 and ϕ(tu) = 1.
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Therefore we transform H0 in (2.1) to countably many moment inequalities based on which we

will construct our test. Define

L =
{
ℓ = (t1, t2, q

−1) :(t1, t2) ∈ [0, 1]2, t1 > t2, q = 2, 3, · · · ,

q · (t1, t2) ∈ {0, 1, 2, · · · , q − 1}2
}
. (2.4)

Choosing h(t) = 1 for simplicity, H0 in (2.1) is equivalent to

H ′
0 : ν(ℓ) ≡ ν2(ℓ)− ν1(ℓ) ≤ 0, for any ℓ = (t1, t2, q

−1) ∈ L,where (2.5)

νj(ℓ) ≡
∫ tj+q−1

tj

µ(s)ds, for j = 1, 2.

The set of the indicator functions of countable intervals L is also used in Hsu et al. (2019).

This choice of L ensures that it is rich enough so there will be no loss of information when we

transform H0 to H ′
0, and it is simple enough in order for a certain uniform central limit theory to

apply.

The null hypothesis in (2.1) has a form that is similar to that in the literature on regression

monotonicity; see for instance Hsu et al. (2019). However, the identification of µ(t) in our case is

different from theirs. Next we discuss identification of ν(ℓ).

Assumption 2.1 (Unconfoundedness): T and ε are independent conditional on X.

Assumption 2.1 is a commonly invoked identifying assumption based on observational data, also

known as conditional independence, or selection on observables. It assumes that conditional on

observables X, T is as good as randomly assigned, or conditionally exogenous.

Since νj(ℓ) ≡
∫ tj+q−1

tj
µ(s)ds is a linear functional of µ, its identification follows directly from the

identification of µ. The identification of µ has been established in the literature under Assumption

2.1; for example, in Colangelo and Lee (2022), for t ∈ T , µ(t) =
∫
X E[Y |T = t,X]dFX(X) that

motivates the class of regression-based (or imputation) estimators. An alternative identifying

moment function µ(t) = limh→0E
[
Kh(T − t)Y/fT |X(t|X)

]
, where Kh(T − t) ≡ k((T − t)/h)/h

uses a suitable second-order symmetric kernel function k(·) with a bandwidth h, motivates the

class of inverse probability weighting estimators.

We use an identifying moment function that is doubly robust or Neyman orthogonal, based

on the Gateaux derivative of µ(t) derived in Colangelo and Lee (2022). We assume a sample

{Zi = (Yi, Ti, X
′
i)

′}ni=1, modeled as independent and identically distributed (i.i.d.) copies of Z =

(Y, T,X ′)′, whose law is determined by the probability measure P on Z ≡ Y×T ×X . In Appendix
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A, we give details of identifying νj(ℓ) ≡
∫ tj+q−1

tj
µ(s)ds = E[ϕj,q(Z)], where the moment function

ϕj,q(Z) ≡
∫ tj+q−1

tj

γ(s,X)ds+
Y − γ(T,X)

p(T,X)
1(T ∈ [tj, tj + q−1]) (2.6)

with γ(t, x) ≡ E[Y |T = t,X = x] and p(t, x) ≡ fT |X(t|x), for j = 1, 2.

3 DML Monotonicity Test

To deliver a reliable distributional approximation in practice, the double debiased ML (DML)

method contains two key ingredients: a doubly robust moment function and cross-fitting. The

doubly robust moment function reduces sensitivity in estimating ν(ℓ) with respect to nuisance

parameters.3 Our DML estimator for ν(ℓ) uses the moment function ϕj,q(Z) in (2.6). Cross-fitting

removes bias induced by overfitting and achieves stochastic equicontinuity without strong entropy

conditions. Our work builds on the results for semiparametric models in Ichimura and Newey

(2022), Chernozhukov et al. (2018), Chernozhukov et al. (2018), and the nonparametric models

for continuous treatments in Colangelo and Lee (2022).

Next we introduce our testing procedure and give a step-by-step algorithm for practical imple-

mentation. The first step is to estimate the nuisance functions γ(t, x) ≡ E[Y |T = t,X = x] and

p(t, x) by a K-fold cross-fitting. The second step is to plug in the nuisance function estimates to

the DML estimator ν̂(ℓ) of ν(ℓ) = ν2(ℓ)− ν1(ℓ) defined in (2.6).

To test the null hypothesis H ′
0, we make use of a Cramér-von Mises test statistic defined as

T̂ =
∑
ℓ∈L

max
{√

n
ν̂(ℓ)

σ̂ν,ϵ(ℓ)
, 0
}2

Q(ℓ), (3.1)

where σ̂2
ν,ϵ(ℓ) is a consistent estimator for the asymptotic variance of

√
n(ν̂(ℓ)−ν(ℓ)). A weighting

function Q satisfies Q(ℓ) > 0 for all ℓ ∈ L and
∑

ℓ∈LQ(ℓ) <∞.

We next define the simulated critical value for our test. We introduce a multiplier bootstrap

method that can simulate a process that converges to the same limit as
√
n(ν̂(ℓ) − ν(ℓ)). Under

specific regularity conditions, we can show that the simulated process weakly converges to a

Gaussian process conditional on the sample path w.p.a.1 and that this limiting Gaussian process

3Our estimator is doubly robust in the sense that it consistently estimates ν(ℓ) if either one of the nuisance
functions E[Y |T,X] or fT |X is misspecified. The rapidly growing ML literature has utilized this doubly robust prop-
erty to reduce regularization and modeling biases in estimating the nuisance parameters by ML or nonparametric
methods; for example, Belloni et al. (2014), Farrell (2015), Belloni et al. (2017), Farrell et al. (2021), Chernozhukov
et al. (2018), Chernozhukov et al. (2018), Rothe and Firpo (2019), and references therein.
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corresponds to the limiting process of
√
n(ν̂(ℓ)− ν(ℓ)). We adopt the GMS method to construct

the simulated critical value.4

The algorithm below summarizes the implementation of our test.

Step 1. (Nuisance functions) For some fixed K ∈ {2, ..., n}, a K-fold cross-fitting partitions

the observation indices into K distinct groups Ik, k = 1, ..., K, such that the sample

size of each group is the largest integer smaller than n/K. Let nk denote the number of

observations in group Ik for k = 1, ..., K. For k ∈ {1, ..., K}, the estimator γ̂k(t, x) for

γ(t, x) ≡ E[Y |T = t,X = x] and the estimator p̂k(t, x) for p(t, x) use observations not in

Ik and satisfy Assumption 3.1.

Step 2. (DML estimator) ν̂(ℓ) = n−1
∑n

i=1

(
ϕ̂2,q(Zi)− ϕ̂1,q(Zi)

)
, where for j = 1, 2,

ϕ̂j,q(Zi) =

∫ tj+q−1

tj

γ̂−i(s,Xi)ds+
Yi − γ̂−i(Ti, Xi)

p̂−i(Ti, Xi)
1(Ti ∈ [tj, tj + q−1]),

γ̂−i(Ti, Xi) = γ̂k(Ti, Xi), and p̂−i(Ti, Xi) = p̂k(Ti, Xi) for i ∈ Ik.
5

Step 3. (Test statistic) σ̂2
ν(ℓ) = n−1

∑n
i=1 ϕ̂

2
ℓ(Zi), where

ϕ̂ℓ(Zi) = ϕ̂2,q(Zi)− ϕ̂1,q(Zi)− ν̂(ℓ). (3.2)

σ̂ν,ϵ(ℓ) = max{σ̂ν(ℓ), ϵ · σ̂ν(0, 1/2, 1/2)}, by which we manually bound the variance esti-

mator away from zero. Compute the Cramér-von Mises test statistic T̂ in (3.1).

Step 4. (Critical values) Let {Ui : 1 ≤ i ≤ n} be a sequence of i.i.d. random variables that

satisfy Assumption 3.2. The simulated process is Φ̂u
ν(ℓ) = n−1/2

∑n
i=1 Ui · ϕ̂ℓ(Zi), where

ϕ̂ℓ(Zi) is the estimated influence function given in (3.2).

ψ̂ν(ℓ) = −Bn · 1
(√

n · ν̂(ℓ)

σ̂ν,ϵ(ℓ)
< −an

)
,

where an and Bn satisfy Assumption 3.3. The critical value is

ĉη(α) = sup

{
q
∣∣∣P u

(∑
ℓ∈L

max
{ Φ̂u

ν(ℓ)

σ̂ν,ϵ(ℓ)
+ ψ̂ν(ℓ), 0

}2

Q(ℓ) ≤ q

)
≤ 1− α + η

}
+ η,

4The GMS approach is similar to the recentering method of Hansen (2005) and Donald and Hsu (2016), and
the contact approach of Linton et al. (2010).

5An equivalent expression for the DML estimator is ν̂(ℓ) = K−1
∑K

k=1 n
−1
k

∑
i∈Ik

ϕ̂k,2,q(Zi)− ϕ̂k,1,q(Zi), where

for j = 1, 2, ϕ̂k,j,q(Zi) =
∫ tj+q−1

tj
γ̂k(s,Xi)ds+ (Yi − γ̂k(Ti, Xi)/p̂k(Ti, Xi)1(Ti ∈ [tj , tj + q−1]). We do not use this

alternative expression to avoid the subscript k, in order to simplify the notation.
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where P u denotes the multiplier probability measure given the observed samples.

Step 5. (Decision rule) Reject H ′
0 if T̂ > ĉη(α).

Remark 3.1 We discuss the tuning parameters. The number of folds in cross-fitting K is fixed

and does not affect asymptotic theory. The choice of K may affect the small-sample performance,

as larger values ofK provide more observations in the training sample used to estimate the nuisance

functions. We choose K = 5 in our empirical application following the recommendations in the

DML literature, such as Chernozhukov et al. (2018). For the numerical integration in Step 2, we

may chooseM = [n2/3], where [·] is the nearest integer, so the condition
√
n/M → 0 in Theorem 3.1

is satisfied. Let N denote the expected sample size of the smallest cube corresponding to q1. We

choose q1 such that N = 50 for all the sample sizes in the simulations. We set an = 0.15 · ln(n),
Bn = 0.85 · ln(n)/ ln ln(n), and η = ϵ = 10−6, as recommended in Hsu et al. (2019). We also try

an =
√

0.3 · ln(n) and Bn =
√

0.4 · ln(n)/ ln ln(n) as suggested by Andrews and Shi (2013, 2014)

and Hsu and Shen (2020) in the simulations.

3.1 Asymptotic Size and Power

Let ∥ · ∥2 denote the L2-norm for the root-mean-square convergence rate, e.g., ∥γ̂k − γ∥2 =(∫
X

∫
T (γ̂k(t, x)− γ(t, x))2 fTX(t, x)dtdx

)1/2
and ∥p̂k−p∥2 =

(∫
X

∫
T (p̂k(t, x)− p(t, x))2 fTX(t, x)dtdx

)1/2
.

Assumption 3.1 For any k ∈ {1, ..., K},

(i) ∥γ̂k − γ∥2 = oP (1) and ∥p̂k − p∥2 = oP (1).

(ii)
√
n∥γ̂k − γ∥2∥p̂k − p∥2 = oP (1).

(iii) There exists a positive constant c such that inft∈T ,x∈X p(t, x) ≥ c. There exists a positive

constant c such that supt∈T ,x∈X var(Y |T = t,X = x) ≤ c.

Assumptions 3.1(i) and (ii) are the typical conditions on the mean-squared convergence rates,

as in Chernozhukov et al. (2018). Theorem 3.1 establishes the limiting behavior of the DML

estimator for ν.

Theorem 3.1 (Uniform asymptotics) Let Assumptions 2.1 and 3.1 hold. Then uniformly over

ℓ ∈ L,
√
n(ν̂(ℓ) − ν(ℓ)) = n−1/2

∑n
i=1 ϕℓ(Zi) + oP (1), where ϕℓ(Zi) = ϕ2,q(Zi) − ϕ1,q(Zi) − ν(ℓ)

defined in (2.6). Also,
√
n(ν̂(·) − ν(·)) ⇒ ΦhDML

(·) where ΦhDML
(·) is a Gaussian process with

variance-covariance kernel hDML(ℓ1, ℓ2) = E[ϕℓ1(Z)ϕℓ2(Z)].
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Consider approximating
∫ tj+q−1

tj
γ̂k(s,Xi)ds by a numerical integration with a set of equally

spaced grid points {s0 = tℓ, s1, ..., sM = tu} over [tℓ, tu], M
−1
∑M

m=1 γ̂k(sm, Xi)1(sm ∈ [tj, tj+q
−1]).

Let
√
n/M → 0, and let the total variation of γ̂k be smaller than a positive constant c with

probability approaching one (w.p.a.1), so that the approximation error of the numerical integration

is asymptotically first-order ignorable.

Assumption 3.2 {Ui : 1 ≤ i ≤ n} is a sequence of i.i.d. random variables that is independent

of the sample path of {(Zi) : 1 ≤ i ≤ n} such that E[Ui] = 0, E[U2
i ] = 1, and E[|Ui|2+δ] < C for

some δ > 0 and C > 0.

Assumption 3.3 (i) an is a sequence of non-negative numbers satisfying limn→∞ an = ∞ and

limn→∞ an/
√
n = 0.

(ii) Bn is a sequence of non-negative numbers satisfying that Bn is non-decreasing, limn→∞Bn =

∞ and limn→∞Bn/an = 0.

Theorem 3.2 Suppose that Assumptions 2.1, 3.1, 3.2 and 3.3 hold. Then the following statements

are true:

1. Under H0, limn→∞ P (T̂ > ĉη(α)) ≤ α;

2. Under H1, limn→∞ P (T̂ > ĉη(α)) = 1.

Theorem 3.2 shows that our test can control the asymptotic size under the significance level

under the null hypothesis and it is consistent against any fixed alternative hypothesis. It is

straightforward for us to show that our test would have non-trivial power against some classes of

local alternatives similar to those in Hsu et al. (2019), but we omit the details.

The high-level conditions in Assumption 3.1 are attainable by various estimators, in particular,

kernel, series, deep neural networks, and Lasso. The theory of the conventional nonparametric

kernel and series methods is well established. The rate conditions are based on the standard

root-mean-squared norm (or the L2 norm), rather than the partial L2 norm with a fixed value

of t as for estimating µ(t) in Colangolo and Lee (2022). The main reason is that ν(ℓ) in our

test is an integration of µ(t) over a range of t and can be estimated at a regular root-n rate.

This advantageous feature enables a broader class of machine learning or nonparametric methods

whose L2-norm convergence rates are available in the literature; for example, Lasso (Bickel et al.,

2009), neural networks (Chen and White, 1999; Schmidt-Hieber, 2020; Farrell et al., 2021), random

forests (Syrgkanis and Zampetakis, 2020), and empirical L2 rate for boosting in Luo and Spindler

(2016), as discussed in Chernozhukov et al. (2018) and Chernozhukov et al. (2022).

9



Recently Farrell et al. (2021) provide ∥γ̂k − γ∥2 of deep neural networks. Colangelo and

Lee (2022) propose conditional density (GPS) estimators that utilize generic estimators of the

conditional mean function. Specifically, Lemmas 1 and 2 in Colangelo and Lee (2022) provide the

convergence rates for their GPS estimators ∥p̂k − p∥2 using the deep neural networks in Farrell

et al. (2021). So Assumptions 3.1(i) and (ii) are attainable by the deep neural networks in Farrell

et al. (2021) and Colangelo and Lee (2022), summarized in Section 3.2. Alternative estimators

for estimating the GPS can be the kernel density estimator, the artificial neural networks in Chen

and White (1999), and Belloni et al. (2019), or the series cross-validated method in Zhang (2022).

In Section 3.3, we illustrate how to employ Lasso methods to estimate the nuisance conditional

mean function γ(t, x) and the generalized propensity score p(t, x) in a high-dimensional setting.

We provide sufficient conditions to verify the high-level Assumption 3.1.

3.2 Conditional density estimation

Colangelo and Lee (2022) propose estimating the reciprocal of the conditional density function

1/p(t, x) using a generic mean regression estimator Υ̂(W ;x) of the conditional mean E[W |X = x]

for a random variable W . Given the mean-squared convergence rate of Υ̂, we can obtain the

corresponding mean-squared convergence rate for p̂ to verify Assumption 3.1. We summarize the

estimator ReGPS below and refer readers to Colangelo and Lee (2022) for details. Moreover the

ReGPS estimator avoids plugging in a small estimate in the denominator, and the estimate is

positive by construction.

It is known that for any CDF F , d
du
F−1(u) = 1

F ′(F−1(u))
for u ∈ (0, 1). So 1

fT |X(t|x) =
∂
∂u
F−1
T |X(u|x)

∣∣
u=FT |X(t|x). Colangelo and Lee (2022) propose the ReGPS estimator of 1

fT |X(t|x) using

a numerical differentiation

1̂

p(t|x)
=
F̂−1
T |X
(
F̂T |X(t|x) + ϵ

∣∣x)− F̂−1
T |X
(
F̂T |X(t|x)− ϵ

∣∣x)
2ϵ

,

where ϵ = ϵn is a positive sequence vanishing as n grows and F̂T |X(t|x)±ϵ ∈ (0, 1). The conditional

CDF is estimated by F̂T |X(t|x) = Υ̂
(
Φ
(

t−T
h1

)
;x
)
, where Φ is the CDF of a standard normal

random variable and h1 = h1n is a bandwidth sequence vanishing as n grows. The conditional u-

quantile function F−1
T |X(u|x) is estimated by the generalized inverse function F̂−1

T |X(u|x) = inft∈T {t :
F̂T |X(t|x) ≥ u}.

Suppose that supt∈T

∥∥∥Υ̂(Φ( t−T
h1

)
;X
)
− E

[
Φ
(

t−T
h1

) ∣∣X]∥∥∥
2
= Op(R1n) for a sequence of con-

stants R1n. Assume Υ̂
(
Φ
(

t−T
h1

)
;x
)

to be continuous in t ∈ T . We can obtain ∥p̂ − p∥2 =

Op(R1nϵ
−1+h21ϵ

−1+ϵ2), by showing the convergence rate in Lemma 1 in Colangelo and Lee (2022)
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to hold uniformly over t.

The ReGPS estimator can employ the deep neural networks in Farrell et al. (2021) that use the

fully connected feedforward neural networks (multilayer perceptron) and the nonsmooth rectified

linear units (ReLU) activation function when the dimension of the control variables dx is fixed.

Lemma 3 in Colangelo and Lee (2022), which is based on Theorem 1 in Farrell et al. (2021), formally

provides that R2
1n = n

− r
r+dX log8 n + log log n/n, where the smoothness parameter r ∈ N+ such

that maxα,|α|≤r ess supy∈Y,t∈T ,x∈X , |Dα
xfT |X(t|x)| ≤ c for some finite positive constant c. We do not

repeat other low-level regularity conditions in Colangelo and Lee (2022) here to conserve space.

3.3 Step 1 Lasso

We illustrate our test by applying Lasso methods in Step 1 to estimate the nuisance functions,

when X is potentially high-dimensional. We follow Su, Ura, and Zhang (2019) (SUZ, hereafter)

to approximate the outcome and treatment models by a linear regression and a logistic regression,

respectively. In particular, the approximation errors satisfy Assumption 3.4 that imposes sparsity

structures on γ(t, x) and the conditional CDF FT |X so that the number of effective covariates that

can affect them is small. See Farrell (2015), Chernozhukov et al. (2022), for example, for in-depth

discussions on the specification of high-dimensional sparse models. We modify the penalized local

least squares estimator of γ(t,X) in SUZ and use the conditional density estimator in SUZ. For

completeness, we present the estimators and asymptotic theory in SUZ and refer readers to SUZ

for details.

To estimate the conditional density p(t, x) = fT |X(t|x), first estimate the conditional CDF FT |X

by the logistic distributional Lasso regression in Belloni et al. (2017) and then take the numerical

derivative. Let b(X) be a p×1 vector of basis functions. We approximate FT |X(t|x) by Λ(b(x)′βt),

where Λ is the logistic CDF. For k ∈ {1, ..., K}, F̂T |Xk
(t|x) = Λ(b(X)′β̂tk), where

β̂tk = argmin
β

1

n− nk

∑
i/∈Ik

M(1{Ti ≤ t}, Xi; β) +
λ̃

n− nk

∥Ψ̂tkβ∥1 (3.3)

where M(y, x; g) = −
(
y log(Λ(b(x)′g)) + (1 − y) log(1 − Λ(b(x)′g))

)
is the logistic likelihood, the

penalty λ̃ = 1.1Φ−1(1− r/{p ∨ nh1})n1/2, for some r → 0 and h1 → 0, with the standard normal

CDF Φ. A generic penalty loading matrix Ψ̂tk is computed by Algorithm 1 below from the iterative

Algorithm 3.2 in SUZ.

Algorithm 1 (SUZ Algorithm 3.2) For k ∈ {1, ..., K},

1. Let Ψ̂0
tk = diag(l0tk,1, ..., l

0
tk,p), where l

0
tk,j = ∥1{T ≤ t}bj(X)∥Pnk,2. Compute β̂0

tk by (3.3) with

11



Ψ̂0
tk in place of Ψ̂tk. Let F̂

0
T |Xk

(t|x) = Λ(b(x)′β̂0
tk).

2. Compute Ψ̂s
tk = diag(lstk,1, ..., l

s
tk,p), where l

s
tk,j =

∥∥∥(1{T ≤ t} − F̂ s−1
T |Xk

(t|X)
)
bj(X)

∥∥∥
Pnk,2

, for

s = 1, ..., S. Compute β̂s
tk by (3.3) with Ψ̂s

tk in place of Ψ̂tk. Let F̂
s
T |Xk

(t, x) = Λ(b(x)′β̂s
tk).

Let the final penalty loading matrix Ψ̂tk be Ψ̂S
tk from Algorithm 1. Compute F̂T |Xk

(t|x) =

Λ(b(X)′β̂tk) from (3.3). Then the conditional density estimator

p̂k(t, x) =
F̂T |Xk

(t+ h1|x)− F̂T |Xk
(t− h1|x)

2h1
.

Assumption 3.4 collects the conditions in Theorems 3.1 and 3.2 in SUZ.

Assumption 3.4 (Lasso) Let T0 be a compact subset of the support of T and X be the support

of X.

(i) (a) ∥maxj≤p |bj(T,X)|∥P,∞ ≤ ζn and C ≤ E [bj(T,X)2] ≤ 1/C, for some positive constant

C, j = 1, ..., p.

(b) supt∈T0 max(∥βt∥0, ∥θ∥0) ≤ s for some s which possibly depends on n, where ∥θ∥0 de-

notes the number of nonzero coordinates of θ.

(c) For the approximation error, supt∈T0 ∥FT |X(t|X) − Λ(b(X)′βt)∥P,∞ = O((s2ζ2n log(p ∨
n)/n)1/2) and ∥γ(T,X)− b(T,X)′θ∥P,∞ = O

(
(s2ζ2n log(p ∨ n)/n)

1/2
)
.

(d) p(t, x) is second-order differentiable w.r.t. t with bounded derivatives uniformly over

(t, x) ∈ T0 ×X .

(e) ζ2ns
2ι2n log(p ∨ n)/(nh1) → 0, nh51/(log(p ∨ n)) → 0.

(ii) (a) There exists some positive constant C < 1 such that C ≤ p(t, x) ≤ 1/C uniformly over

(t, x) ∈ T0 ×X .

(b) γ(t, x) is three times differentiable with all three derivatives being bounded uniformly

over (t, x) ∈ T0 ×X .

(iii) There exists a sequence ιn → ∞ such that w.p.a.1 0 < κ′ ≤ infδ ̸=0,∥δ∥0≤sιn
∥b(T,X)′δ∥Pn,2

∥δ∥2 ≤
supδ ̸=0,∥δ∥0≤sιn

∥b(T,X)′δ∥Pn,2

∥δ∥2 ≤ κ′′ <∞.
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Let Assumption 3.4 hold. Then Theorems 3.1 and 3.2 in SUZ imply that sup(t,x)∈T ×X |γ̂k(t, x)−
γ(t, x)| = OP (An), where An = ιn(log(p ∨ n)s2ζ2n/n)

1/2 and sup(t,x)∈T ×X |p̂k(t, x) − p(t, x)| =

OP (Rn), where Rn = h−1
1 (log(p ∨ n)s2ζ2n/n)1/2. Then we can obtain the same rates for the root-

mean-squared rates ∥γ̂k − γ∥2 and ∥p̂k − p∥2 to verify Assumption 3.1. Therefore a sufficient

condition of Assumption 3.4(i) is An → 0 and Rn → 0. And a sufficient condition of Assump-

tion 3.4(ii) is
√
nAnRn → 0.

It may be interesting to note that the conditional density estimators discussed above are based

on the mean regression estimators for the conditional CDF. The numerical differentiation slows

down the convergence rate by the step size, i.e., h−1
1 in the Lasso method and ϵ−1 in the ReGPS

in Colangelo and Lee (2022).6

As we use a Neyman orthogonal and doubly robust moment function for ν(ℓ), the final es-

timator is less sensitive to the estimation errors for the Step 1 nuisance functions and hence

the corresponding tuning parameters. The Lasso penalty could be chosen by the rule-of-thumb

method in Su et al. (2019). Specifically following Su et al. (2019), we can let ιn =
√
log log(n)

in λ, r = 1/ log(n) in λ̃, and the rule-of-thumb bandwidth h1 = 1.06 × sd(T ) × n−1/5. See also

Farrell (2015) for the choice of penalty. An alternative widespread practice is cross-validation.

Chetverikov et al. (2021) provide theoretical justification of the cross-validated Lasso estimator

by showing that it has nearly optimal rates of convergence.

4 Simulation

This section provides a simulation study to examine the finite sample performance of the proposed

test. We will examine the size and power properties of our test, and compare our test with SUZ’s

method. We also examine the local power of our test and SUZ’s method. Finally, we examine the

robustness of our test against some tuning parameters in the test.

To implement our test in practice, one has to choose several tuning parameters in advance.

We make the following propositions concerning the choice of these parameters and present related

Monte Carlo simulation results further below.7

1. Instrumental functions: We opt for using a set of indicator functions of countable hypercubes.

6By Theorem 6.2 and Comment 6.1 in Belloni et al. (2017), the rate of the conditional CDF regression estimator
is supt∈T ∥F̂T |X(t,X)−FT |X(t,X)∥Pn,2 = Op(R1n) with R1n = (log(p∨n)s/n)1/2. Theorem 3.2 in Su et al. (2019)

shows that the rate of the conditional density estimator supt∈T ∥p̂(t,X)− p(t,X)∥Pn,2 = Op(R1nh
−1
1 ).

7The MATLAB code is available upon request.
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Define

L =
{
ℓ = (t1, t2, q

−1) :(t1, t2) ∈ [0, 1]2, t1 > t2, q = 2, · · · , q1,

q · (t1, t2) ∈ {0, 1, 2, · · · , q − 1}2
}
,

where q1 is a natural number and is chosen such that the expected sample size of the smallest

cube is around 50. Our simulations show that the results are robust to various expected

sample sizes.

2. Q(ℓ): The distribution Q(ℓ) assigns weight ∝ q−2 to each q, and for each q, Q(ℓ) assigns an

equal weight to each instrumental function with the last element of ℓ equal to q−1. Recall

that for each q, there are (q(q+1)/2) instrumental functions with the last element of ℓ equal

to q−1.

3. an, Bn, ϵ, η: We set an = 0.15 · ln(n), Bn = 0.85 · ln(n)/ ln ln(n), ϵ = 10−6, and η = 10−6 as

suggested by Hsu et al. (2019). These choices are used in all the simulations that we report

below and seem to perform well.

Note that if µ(t) is differentiable for all t, then H0 in (2.1) is equivalent to

H ′′
0 : dµ(t)/dt ≥ 0, for t ∈ [tℓ, tu]. (4.1)

Therefore, one can employ SUZ’s method to test weather the average partial effect dµ(t)/dt is

greater or equal to zero for all t ∈ [tℓ, tu]; see Appendix for details of the procedure.

For all data generating processes (DGPs), the continuous treatment variable T , the control

variables X, and the error term Uy are generated as follows

T = (3.6 +X ′β)/7.2 + 0.5Ut,

X = (X1, . . . , X100)
′ ∼ N (0,Σ),

Uy ∼ N (0, 1),

where the (i, j)-entry Σij = (0.5)|i−j| for i, j = 1, . . . , 100, Ut ∼ N (0, 1), and Uy, Ut, and X are

mutually independent. We set βj = 1/j2 for mild dependence between Xj and βj = 1/j for strong

dependence between Xj. Four cases of the potential outcomes are studied:

DGP-1: Y = Uy,

DGP-2: Y = X ′βT + T 2 +X ′β + Uy,
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DGP-3: Y = X ′βT − T +X ′β + Uy,

DGP-4: Y = X ′βT + sin(πT ) +X ′β + Uy.

In DGP-1, µ(t) = 0, and H0 holds with moment equalities. In this case, we expect that the size

of the proposed test will achieve the nominal level, since every moment would hold with equality.

In DGP-2, µ(t) = t2, and H0 holds with strict moment inequalities. In this case, we expect the size

will converge to zero since every moment would hold with strict inequality. This is because the

test statistics will converge to zero and the critical value is bounded away from zero. In DGP-3,

µ(t) = −t, and in DGP-4, µ(t) = sin(πt). In both cases, H0 does not hold, and we expect the

power will increase with the sample size.

In these DGPs, we have 1 + dX = 101 regressors. We consider samples of sizes n = 200, 400,

800, and 1200. For q1, we set q1 = 4 for n = 200, q1 = 8 for n = 400, q1 = 16 for n = 800,

and q1 = 24 for n = 1200. Recall that N denotes the expected sample size of the smallest cube

corresponding to q1. We choose q1 such that N = 50 for all the sample sizes. For the K-fold

cross-fitting, we consider the number of split subsamples K ∈ {2, 5, 10}. All our Monte Carlo

results are based on 1000 simulations. In each simulation, the critical value is approximated by

1000 bootstrap replications. The nominal size of the test is set at 10%.

To estimate the conditional mean function γ(t, x) = E[Y |T = t,X = x], we employ the

Lasso regression, where the penalization parameter is chosen via grid search utilizing 10-fold cross

validation. To estimate the conditional density estimation p(t, x), we first estimate FT |X(t|x)
by the logistic distributional Lasso regression, and then take the numerical derivative. The pe-

nalization parameter of the distributional Lasso regression is estimated by Algorithm 3.2 of Su

et al. (2019), described in Section 3.3. Also, all Lasso estimations include an intercept and the

covariates. For numerical integration in Step 2, we set M = [n2/3], where [·] is the nearest

integer. Our test is based on the trimmed generalized propensity score estimator, defined as

p̃(Ti, Xi) = max{p̂(Ti, Xi), 0.025}, implying that conditional treatment densities below 2.5% are

set to 2.5%.8,9

Table 1 shows the rejection probabilities of our test for DGPs 1-4, and the results are consistent

with our theoretical findings. For the mild dependence case (βj = 1/j2), the proposed test controls

size well in DGP-1 and DGP-2, and the rejection probabilities increase with the sample size and

are greater than the nominal size 0.1 in DGP-3 and DGP-4. For the strong dependence case

(βj = 1/j), our test still controls size well in both DGP-1 and DGP-2. The power increases

8In general, one can follow Donald et al. (2014) and Hsu et al. (2020) and trim the estimated generalized
propensity scores to prevent them from being too close zero, in order to obtain a more stable estimator whose
variance is not affected by extremely low scores.

9Based on this trimming rule, around 0.5% of the samples are trimmed.
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Table 1: Rejection probabilities for N = 50 and different K

βj = 1/j2 βj = 1/j

DGP n K=2 K=5 K=10 SUZ K=2 K=5 K=10 SUZ
1 200 0.105 0.108 0.120 0.124 0.133 0.098 0.129 0.088
1 400 0.112 0.118 0.126 0.100 0.107 0.110 0.109 0.112
1 800 0.097 0.103 0.118 0.114 0.092 0.128 0.125 0.106
1 1200 0.113 0.121 0.104 0.102 0.122 0.121 0.120 0.099
2 200 0.001 0.000 0.001 0.000 0.002 0.000 0.003 0.000
2 400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 800 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
2 1200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 200 0.931 0.976 0.978 0.666 0.605 0.768 0.833 0.131
3 400 1.000 1.000 1.000 0.904 0.976 0.995 0.996 0.310
3 800 1.000 1.000 1.000 0.973 1.000 1.000 1.000 0.617
3 1200 1.000 1.000 1.000 0.979 1.000 1.000 1.000 0.760
4 200 0.197 0.210 0.205 0.925 0.061 0.083 0.080 0.453
4 400 0.429 0.501 0.530 0.989 0.155 0.217 0.227 0.803
4 800 0.859 0.905 0.908 0.998 0.427 0.565 0.562 0.950
4 1200 0.985 0.987 0.984 1.000 0.702 0.821 0.803 0.982

with the sample size in DGP-3 and DGP-4, but the rejection probabilities are a bit less than the

nominal size 0.1 for n = 200 in DGP-4. Overall, we do not find significant difference for different

choices of K.

We next compare the performance between our test and the SUZ method. As we can see

from Table 1, the performance of the SUZ method is quite similar to that of our test in DGP-1

and DGP-2. However, our test has better power properties than the SUZ method in DGP-3,

but lower power than the SUZ method in DGP-4. The main reason is the following. In DGP-3,

dµ(t)/dt = −1 and in this case, the violation of the null hypothesis is the same for each t. In

contrast, in DGP-4, dµ(t)/dt = π cos(πt) with violation of the null hypothesis is higher when t is

closer to 1. For SUZ’s method, which is based on a uniform confidence band of direct estimation

of dµ(t)/dt, it is equivalent to a supremum-type test, so the power of it can be driven by a large

deviation of the null at a specific point such as DGP-4. On the other hand, our test is an integral-

type test, so in general, it will have better power if the deviation of the null is more evenly spaced

as in DGP-3. As a result, our test has better power in DGP-3 and SUZ’s method has better power

in DGP-4.

We now consider two extended cases to investigate the local power properties. The data

generating processes are based on DGP-3 and DGP-4, and the potential outcomes are modified to
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DGP-3n: Y = X ′βT − T/
√
n+X ′β + Uy,

DGP-4n: Y = X ′βT + sin(πT )/
√
n+X ′β + Uy.

Therefore µ(t) = −t/
√
n in DGP-3n and µ(t) = sin(πt)/

√
n in DGP-4n.

Table 2: Rejection probabilities for N = 50 and different K in DGP-3n and DGP-4n

βj = 1/j2 βj = 1/j

DGP n K=2 K=5 K=10 SUZ K=2 K=5 K=10 SUZ
3n 200 0.091 0.104 0.086 0.038 0.050 0.060 0.066 0.008
3n 400 0.108 0.092 0.131 0.059 0.052 0.063 0.076 0.009
3n 800 0.111 0.103 0.133 0.069 0.062 0.088 0.105 0.008
3n 1200 0.127 0.108 0.104 0.054 0.074 0.081 0.105 0.011
4n 200 0.060 0.057 0.092 0.028 0.040 0.033 0.047 0.006
4n 400 0.073 0.082 0.073 0.054 0.037 0.030 0.035 0.009
4n 800 0.041 0.081 0.082 0.064 0.041 0.051 0.069 0.012
4n 1200 0.063 0.076 0.077 0.065 0.042 0.065 0.052 0.015

Tables 2 shows the rejection probabilities of our test and the SUZ method in DGP-3n and

DGP-4n. It is clear that our test has a nontrivial power in both DGPs and has better local

power properties than the SUZ method. The main reason is the following. The SUZ method is

based on the uniform confidence band of nonparametric estimation of dµ(t)/dt that converges at

a nonparametric rate, so it will not have local power against the n−1/2 local alternatives in the

form of DGP-3n and DGP-4n in that the local power is equal to or smaller than the pre-specified

significance level; on the other hand, our test can have non-trivial local power against some n−1/2

local alternatives as in Hsu et al. (2019).

Now we investigate the robustness of the performance of our test to the choice of q1. We

consider three alternative choices of q1, each resulting in the expected sample size of the smallest

cube N = 33, 40, and 66, respectively. Table 3 shows the rejection probabilities of our test for

different choices of N . The results suggest that the choice of q1 does not affect the test performance

much. Therefore, the finite sample behavior of our test appears to be reasonably robust to different

values of q1.

Next we investigate the robustness of the performance of our test to the choice of an and Bn.

Instead of setting an = 0.15 · ln(n) and Bn = 0.85 · ln(n)/ ln ln(n), we consider an =
√

0.3 · ln(n)
and Bn =

√
0.4 · ln(n)/ ln ln(n) as suggested by Andrews and Shi (2014) and Hsu and Shen

(2020). Table 4 shows that our test still controls size well in both DGP-1 and DGP-2, the

rejection probabilities are greater than the nominal size 0.1 in DGP-3 and DGP-4, and our test

has nontrivial power in DGP-3n and DGP-4n.
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Table 3: Rejection probabilities for K = 5 and different N

βj = 1/j2 βj = 1/j

DGP n N=33 N=40 N=50 N=66 N=33 N=40 N=50 N=66
1 200 0.133 0.100 0.108 0.113 0.101 0.121 0.098 0.111
1 400 0.118 0.116 0.118 0.099 0.127 0.114 0.110 0.110
1 800 0.136 0.103 0.103 0.091 0.122 0.108 0.128 0.109
1 1200 0.102 0.104 0.121 0.108 0.111 0.097 0.121 0.104
2 200 0.003 0.000 0.000 0.000 0.002 0.000 0.000 0.001
2 400 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
2 800 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 1200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 200 0.982 0.982 0.976 0.984 0.812 0.799 0.768 0.789
3 400 1.000 1.000 1.000 1.000 0.994 0.994 0.995 0.993
3 800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 200 0.210 0.247 0.210 0.170 0.100 0.072 0.083 0.084
4 400 0.521 0.503 0.501 0.465 0.220 0.221 0.217 0.202
4 800 0.911 0.912 0.905 0.895 0.549 0.554 0.565 0.547
4 1200 0.992 0.989 0.987 0.993 0.816 0.806 0.821 0.809
3n 200 0.102 0.120 0.104 0.093 0.047 0.066 0.060 0.051
3n 400 0.114 0.108 0.092 0.109 0.071 0.075 0.063 0.069
3n 800 0.115 0.118 0.103 0.127 0.092 0.073 0.088 0.083
3n 1200 0.114 0.123 0.108 0.118 0.092 0.097 0.081 0.082
4n 200 0.071 0.082 0.057 0.070 0.048 0.038 0.033 0.042
4n 400 0.086 0.065 0.082 0.068 0.056 0.039 0.030 0.032
4n 800 0.077 0.072 0.081 0.067 0.060 0.060 0.051 0.065
4n 1200 0.072 0.066 0.076 0.089 0.059 0.056 0.065 0.060
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Table 4: Rejection probabilities for an =
√
0.3 · ln(n) and Bn =

√
0.4 · ln(n)/ ln ln(n)

βj = 1/j2 βj = 1/j

DGP n K=2 K=5 K=10 K=2 K=5 K=10
1 200 0.108 0.122 0.111 0.125 0.108 0.116
1 400 0.103 0.105 0.115 0.110 0.112 0.104
1 800 0.132 0.104 0.098 0.114 0.110 0.120
1 1200 0.100 0.095 0.090 0.101 0.108 0.091
2 200 0.000 0.000 0.000 0.000 0.000 0.000
2 400 0.000 0.000 0.000 0.000 0.000 0.000
2 800 0.000 0.000 0.000 0.000 0.000 0.000
2 1200 0.000 0.000 0.000 0.000 0.000 0.000
3 200 0.928 0.978 0.984 0.594 0.794 0.826
3 400 1.000 1.000 1.000 0.979 0.994 0.996
3 800 1.000 1.000 1.000 1.000 1.000 1.000
3 1200 1.000 1.000 1.000 1.000 1.000 1.000
4 200 0.118 0.135 0.140 0.049 0.057 0.063
4 400 0.324 0.400 0.419 0.070 0.157 0.165
4 800 0.811 0.858 0.839 0.358 0.416 0.440
4 1200 0.969 0.984 0.985 0.611 0.695 0.716
3n 200 0.075 0.101 0.085 0.037 0.055 0.057
3n 400 0.090 0.096 0.102 0.043 0.052 0.055
3n 800 0.091 0.112 0.136 0.056 0.076 0.074
3n 1200 0.098 0.116 0.134 0.066 0.095 0.094
4n 200 0.071 0.065 0.063 0.023 0.031 0.028
4n 400 0.066 0.074 0.074 0.024 0.026 0.037
4n 800 0.036 0.050 0.075 0.036 0.042 0.055
4n 1200 0.070 0.090 0.084 0.033 0.046 0.054
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5 Empirical application

As an empirical illustration, we apply our test to data from the Job Corps study. The latter was

conducted between November 1994 and February 1996 to evaluate the publicly funded U.S. Job

Corps program and used an experimental design that randomly assigned access to the program.

Job Corps targets youths from low-income households who are between 16 and 24 years old

and legally reside in the U.S. Program participants obtained on average roughly 1200 hours of

vocational and/or academic classroom training as well as housing and board over an average

duration of 8 months. We refer to Schochet et al. (2001) and Schochet et al. (2008) for a detailed

discussion of the study design and the average effects of program assignment on a range of different

outcomes. Their results suggest that Job Corps raises educational attainment, reduces criminal

activity, and increases labor market performance measured by employment and earnings, at least

for some years after the program.

Particularly relevant for our context is the study by Flores et al. (2012), who consider the

length of exposure to academic and/or vocational training as continuously distributed treatment

to assess its effect on earnings based on regression and weighting estimators (using the inverse of the

conditional treatment density as weight). As the length of treatment exposure is (in contrast to Job

Corps assignment) not random, they impose a selection-on-observables assumption and control for

baseline characteristics at Job Corps assignment. While the authors find overall positive average

effects of increasing hours in academic and vocational instruction, the marginal effects appear to

decrease with length of exposure, pointing to a potential concavity in the association of earnings

and time of instruction. Similarly, Lee (2018) and Colangelo and Lee (2022) assess the effect of

hours of training on the proportion of weeks employed in the second year after program assignment

based on kernel regression and double machine learning, respectively. Also for this outcome, the

plotted regression lines in both studies point to a concave association with the treatment dose.10

However, in the light of estimation uncertainty, mere eye-balling of the outcome-treatment

associations in empirical applications does not tell us whether specific shape restrictions can be

refuted. For this reason, we use our DML method with Lasso regression for nuisance parameter

estimation to formally test whether weak positive and negative monotonicity can be rejected in

the Job Corps data when considering several labor market outcomes. To this end, we define the

treatment variable T as the total hours spent in academic and vocational training in the 12 months

following the program assignment. Our outcomes Y include weekly earnings in the fourth year,

10See also Huber et al. (2020), who use a causal mediation approach to assess the direct effect of the treatment
dose on the number of arrests in the fourth year after program assignment when controlling for employment behavior
in the second year based on inverse probability weighting, and find a non-linear association.
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earnings and hours worked per week in quarter 16, and a binary employment indicator four years

after assignment (i.e., in week 208).

For invoking weak unconfoundedness (Assumption 2.1), we consider the same set of pre-

treatment covariates X as Lee (2018), Colangelo and Lee (2022), and Huber et al. (2020), which

overlaps with the control variables of Flores et al. (2012).11 We condition on individual charac-

teristics like age, gender, ethnicity, language competency, education, marital status, household

size and income, previous receipt of social aid, family background (e.g., parents’ education), and

criminal activity, as well as health and health-related behavior (e.g., smoking, alcohol, or drug

consumption). Conditioning on such a rich set of socio-economic variables appears important, as

the satisfaction of weak unconfoundedness relies on successfully controlling for all factors jointly

affecting treatment duration and labor market behavior. Furthermore, we include variables that

might be associated with the duration of training, namely expectations about Job Corps and in-

teraction with the recruiters, which might serve as proxies for unobserved personality traits (like

motivation) that could also affect the outcomes. Finally, we control for pre-treatment outcomes,

namely previous labor market participation and earnings, to tackle any confounders that affect

the outcomes of interest through their respective pre-treatment values.

The original Job Corps data set consists of 15, 386 individuals prior to program assignment,

but a substantial share never enrolled in the program and dropped out of the study, leaving only

11, 313 individuals with completed follow-up interviews four years after randomization. Among

those, 6, 828 had been randomized into Job Corps and had thus access to academic or vocational

training. To define our final evaluation sample, we follow Flores et al. (2012), Lee (2018), Colangelo

and Lee (2022), and Huber et al. (2020) and consider observations with at least 40 hours (or one

working week) of training for our analysis, all in all 4, 166 individuals. Among these, there are

cases of item non-response in various elements of X measured at the baseline survey, which we

account by including missing dummies as additional regressors, while observations with missing

values in the outcome of interest need to be dropped when running the respective test. Table 9 in

the Appendix provides descriptive statistics for selected covariates X (see Huber et al. (2020) for

a full list of control variables) as well as for the treatment T and all outcomes Y , including the

respective number of nonmissing observations (nonmissing).

The choices of nuisance parameters are the same as in the simulations (see the previous sec-

tion). The number of subsamples used for cross-fitting is 5, and the expected sample size of the

smallest cube is either 40 or 50. The Lasso estimations include an intercept, the covariates and

11A control variable in Flores et al. (2012) we do not have access to is the local unemployment rate, which was
constructed by matching county-level unemployment rates to individual postal codes of residence, which are only
available in a restricted-use data set.
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the squared terms of any non-binary covariates. The p-values of the tests for the various outcomes

are calculated based on 1000 bootstrap replications.12

In a first step, we apply the test to a treatment interval of T ∈ [40, 3000], where choosing

3000 hours of training as the upper bound of the analysis is motivated by the quickly decreasing

number of observations beyond that point.

Table 5: Test statistic and p-value, 40 ≤ T ≤ 3000

N=40, t1 > t2 N=50, t1 > t2

H0 : µ(t1) ≥ µ(t2) µ(t1) ≤ µ(t2) µ(t1) ≥ µ(t2) µ(t1) ≤ µ(t2)
Y stat p-value stat p-value stat p-value stat p-value

earny4 0.001 1.000 7.205 0.000 0.001 1.000 6.078 0.000
earnq16 0.001 1.000 8.740 0.000 0.001 1.000 8.435 0.000
hrswq16 0.001 1.000 9.985 0.000 0.001 1.000 9.613 0.000
work208 0.001 0.997 10.397 0.000 0.001 0.998 9.478 0.000

Note: Outcomes ‘earny4’, ‘earnq16’, ‘hrswq16’, and ‘work208’ are weekly earnings in the fourth
year, earnings and hours worked per week in quarter 16, and a binary employment indicator four
years after assignment (i.e., in week 208). ‘Stat’ denotes the test statistic.

Table 5 reports the test statistics and p-values for all outcomes under both null hypotheses

of weakly increasing mean potential outcomes in the treatment (µ(t1) ≥ µ(t2) for t1 > t2) and

weakly decreasing mean potential outcomes (µ(t1) ≤ µ(t2)), respectively. Our tests clearly reject

the latter hypothesis of weakly negative monotonicity for any labor market outcome at the 1%

level of statistical significance. In contrast, weak positive monotonicity is never rejected, as any

test yields p-values close to or equal to 1 (or 100%). Our findings therefore suggest that an increase

in the treatment does either increase or at least not reduce the outcome over the treatment range

T ∈ [40, 3000].

It is worth mentioning that the concavities in the outcome-treatment associations spotted in the

previously mentioned empirical applications suggest decreasing marginal effects when increasing

the treatment. In our testing context, this implies that weakly negative monotonicity should be

more clearly rejected for lower rather than higher ranges of treatment values by our method.

To verify this suspicion, in a second step we partition the treatment support into three sets of

[40, 1000], [1000, 2000], and [2000, 3000] and run the tests separately within each set.

Table 6 presents the results for T ∈ [40, 1000]. None of the tests rejects weakly positive mono-

tonicity at any conventional level of significance, while all tests strongly reject weakly negative

12In our empirical study, we do not get unstable ν(ℓ) estimates, so we decided not to apply the trimming method.
Also, we note that all estimated generalized propensity scores are greater than 0.0001 in our empirical study.
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Table 6: Test statistic and p-value, 40 ≤ T ≤ 1000

N=40, t1 > t2 N=50, t1 > t2

H0 : µ(t1) ≥ µ(t2) µ(t1) ≤ µ(t2) µ(t1) ≥ µ(t2) µ(t1) ≤ µ(t2)
Y stat p-value stat p-value stat p-value stat p-value

earny4 0.004 0.750 11.402 0.000 0.004 0.750 11.562 0.000
earnq16 0.017 0.535 5.556 0.000 0.016 0.540 5.427 0.000
hrswq16 0.007 0.631 7.157 0.000 0.007 0.666 6.998 0.000
work208 0.001 0.991 11.675 0.000 0.001 0.985 11.081 0.000

Note: Outcomes ‘earny4’, ‘earnq16’, ‘hrswq16’, and ‘work208’ are weekly earnings in the fourth
year, earnings and hours worked per week in quarter 16, and a binary employment indicator four
years after assignment (i.e., in week 208). ‘Stat’ denotes the test statistic.

Table 7: Test statistic and p-value, 1000 ≤ T ≤ 2000

N=40, t1 > t2 N=50, t1 > t2

H0 : µ(t1) ≥ µ(t2) µ(t1) ≤ µ(t2) µ(t1) ≥ µ(t2) µ(t1) ≤ µ(t2)
Y stat p-value stat p-value stat p-value stat p-value

earny4 0.075 0.672 0.485 0.206 0.076 0.631 0.468 0.238
earnq16 0.554 0.200 0.029 0.860 0.524 0.207 0.038 0.814
hrswq16 0.563 0.183 0.088 0.580 0.552 0.194 0.088 0.552
work208 0.419 0.226 0.232 0.393 0.415 0.225 0.264 0.346

Note: Outcomes ‘earny4’, ‘earnq16’, ‘hrswq16’, and ‘work208’ are weekly earnings in the fourth
year, earnings and hours worked per week in quarter 16, and a binary employment indicator four
years after assignment (i.e., in week 208). ‘Stat’ denotes the test statistic.
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monotonicity. For the intermediate treatment range of [1000, 2000] considered in Table 7, however,

neither positive nor negative monotonicity is ever rejected at the 10% level of statistical signifi-

cance. This implies that marginal treatment effects are generally less positive than for lower values

of T . The same findings apply to the highest treatment bracket [2000, 3000], where all tests yield

p-values which are beyond conventional levels of significance. Summing up, our empirical find-

ings are consistent with a concave mean potential outcome-treatment dependence, implying that

initially strongly positive marginal treatment effects decrease as the treatment value considered

(hours in training) increases. A potential explanation for the concavity could be that individuals

attending more training in the first year might be induced to attain more education also in the

following years rather than to participate in the labor market.

Table 8: Test statistic and p-value, 2000 ≤ T ≤ 3000

N=40, t1 > t2 N=50, t1 > t2

H0 : µ(t1) ≥ µ(t2) µ(t1) ≤ µ(t2) µ(t1) ≥ µ(t2) µ(t1) ≤ µ(t2)
Y stat p-value stat p-value stat p-value stat p-value

earny4 0.029 0.600 0.487 0.211 0.023 0.641 0.472 0.199
earnq16 0.008 0.889 0.591 0.178 0.007 0.876 0.543 0.210
hrswq16 0.132 0.353 0.205 0.353 0.149 0.346 0.176 0.385
work208 0.465 0.229 0.020 0.723 0.457 0.231 0.014 0.758

Note: Outcomes ‘earny4’, ‘earnq16’, ‘hrswq16’, and ‘work208’ are weekly earnings in the fourth
year, earnings and hours worked per week in quarter 16, and a binary employment indicator four
years after assignment (i.e., in week 208). ‘Stat’ denotes the test statistic.

6 Testing Monotonicity Conditional on Covariates

In this section, we adapt our method to testing monotonicity with conditional mean potential

outcomes given continuous covariates X1 ⊆ X = (X ′
1, X

′
2)

′. In this case, the null hypothesis

considered corresponds to

H0 : µ(t1, x1) ≥ µ(t2, x1), for all t1 ≥ t2, for t1, t2 ∈ [0, 1] and x1 ∈ X1, (6.1)

where µ(t, x1) = E[Y (t)|X1 = x1] is the conditional average of the potential outcome function or

the average dose response function. The conditional ATE (CATE) of a continuous treatment can

be defined as µ(t2, x1) − µ(t1, x1) when the continuous treatment is changed from t1 to t2. The

identification of µ(t, x1) follows the same arguments in the unconditional ADF µ(t). For example,
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X1 could be “age,” which is sometimes treated as continuous variable in empirical studies, and we

can study the heterogeneous effect over different subpopulations defined by age.13

We allowX2 to be potentially high-dimensional and letX1 be of fixed dimension. For simplicity

and without loss of generality, we henceforth assume thatX1 is a scalar with X1 = [0, 1]. By Lemma

2.1 of Hsu and Shen (2020), H0 in (6.1) is equivalent to

∫ x1+q−1

x1

∫ t2+q−1

t2

µ(s, x̃1)h(s, x̃1)dsdx̃1 ·
∫ x1+q−1

x1

∫ t1+q−1

t1

h(s, x̃1)dsdx̃1−∫ x1+q−1

x1

∫ t1+q−1

t1

µ(s, x̃1)h(s, x̃1)dsdx̃1 ·
∫ x1+q−1

x1

∫ t2+q−1

t2

h(s, x̃1)dsdx̃1 ≤ 0 (6.2)

for any q = 2, · · · , and for any t1 ≥ t2 such that t1, t2, x1 ∈ {0, 1/q, 2/q, · · · , 1− 1/q}. Similar to

the unconditional case, define

Lx =
{
ℓx = (t1, t2, x1, q

−1) :(t1, t2) ∈ [0, 1]2, t1 > t2, q = 2, 3, · · · ,

q · (t1, t2, x1) ∈ {0, 1, 2, · · · , q − 1}3
}

(6.3)

and νj(ℓx) ≡
∫ x1+q−1

x1

∫ tj+q−1

tj
µ(s, x̃1)h(s, x̃1)dsdx̃1 for ℓx = (t1, t2, x1, q

−1).

We derive an identifying moment function for νj(ℓx) that is doubly robust and Neyman or-

thogonal, based on the Gateaux derivative of µ(t, x1) derived in (A.3) in Appendix. We choose the

weighting function to be the density function of X1, i.e., h(t, x) = fX1(x1). So we avoid estimating

the additional nuisance function fX1(x1) in the moment function. This permits establishing the

following lemma.

Lemma 6.1 Suppose Assumption 2.1 holds. Assume that µ(t, x1) is continuous in t for all x1 ∈
[0, 1]. Then H0 in (6.1) is equivalent to

H ′
0 : ν(ℓx) = ν2(ℓx)− ν1(ℓx) ≤ 0 for any ℓx = (t1, t2, x1, q

−1) ∈ Lx, (6.4)

where νj(ℓx) = E [ϕj,q(Z)1(X1 ∈ [x1, x1 + q−1])] for j = 1, 2, with ϕj,q(Z) given in (2.6).

Similar to Theorem 3.1, we can show that uniformly over ℓx ∈ Lx,
√
n(ν̂(ℓx) − ν(ℓx)) =

n−1/2
∑n

i=1 ϕℓx(Zi) + oP (1). As the unconditional case in Section 3, we implement our test by the

following algorithm.

Step 1. (Nuisance functions) For some fixed K ∈ {2, ..., n}, a K-fold cross-fitting partitions

13We focus on the case when X1 is a continuous variable. If X1 is a discrete variable taking on a finite number
of values, then we can just split the sample and conduct a joint test over different values of X1.
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the observation indices into K distinct groups Ik, k = 1, ..., K, such that the sample size

of each group is the largest integer smaller than n/K. For k ∈ {1, ..., K}, the estimators

γ̂k(t, x) and p̂k(t, x) use observations not in Ik and satisfy Assumption 3.1.

Step 2. (DML estimator) ν̂(ℓx) = n−1
∑n

i=1

(
ϕ̂ℓx2(Zi)−ϕ̂ℓx1(Zi)

)
, where ϕ̂ℓxj(Z) = ϕ̂j,q(Z)1(X1 ∈

[x1, x1 + q−1]) and ϕj,q(Z) given in (2.6), for j = 1, 2.

Step 3. (Test statistic) σ̂2
ν(ℓx) = n−1

∑n
i=1 ϕ̂

2
ℓx
(Zi), where ϕ̂ℓx(Zi) = ϕ̂ℓx2(Zi)− ϕ̂ℓx1(Zi)− ν̂(ℓx).

σ̂ν,ϵ(ℓx) = max{σ̂ν(ℓx), ϵ · σ̂ν(0, 1/2, 0, 1/2)}.

Compute the Cramér-von Mises test statistic T̂x1 =
∑

ℓx∈Lx
max

{√
n ν̂(ℓx)

σ̂ν,ϵ(ℓx)
, 0
}2

Q(ℓx),

whereQ is a weighting function such thatQ(ℓx) > 0 for all ℓx ∈ Lx and
∑

ℓx∈Lx
Q(ℓx) <∞.

Step 4. (Critical values) Let {Ui : 1 ≤ i ≤ n} be a sequence of i.i.d. random variables that

satisfy Assumption 3.2.

The simulated process is constructed as Φ̂u
ν,x(ℓx) = n−1/2

∑n
i=1 Ui · ϕ̂ℓx(Zi), where ϕ̂ℓx(Zi)

is the estimated influence function in Step 3.

ψ̂ν(ℓx) = −Bn · 1
(√

n · ν̂(ℓx)

σ̂ν,ϵ(ℓx)
< −an

)
.

where an and Bn satisfy Assumption 3.3. The critical value is

ĉηx1
(α) = sup

{
q
∣∣∣P u

(∑
ℓx∈Lx

max
{Φ̂u

ν,x(ℓx)

σ̂ν,ϵ(ℓx)
+ ψ̂ν(ℓx), 0

}
Q(ℓx) ≤ q

)
≤ 1− α + η

}
+ η,

where P u denotes the multiplier probability measure given the observed samples.

Step 5. (Decision rule) Reject H ′
0 if T̂x1 > ĉηx1

(α).

The size and power properties are similar to the unconditional potential outcome cases, and

the details are omitted for brevity.

Remark 6.2 Our test has the advantage of being easily extended to the conditional case, com-

pared with the uniform inference method based on Su et al. (2019) considered in our simula-

tion. This is because such a supremum-type test would require nonparametric estimation of the

dµ(t, x1)/dx that is not a trivial extension of Su et al. (2019). More specifically, based on the

Gateaux derivative limit of µ(t, x1) = E[Y (t)|X1 = x1] derived in (A.3), we can extend the DML
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estimator of E[Y (t)] in Colangelo and Lee (2022) to estimate µ(t, x1) by

µ̂(t, x1) =
1

n

K∑
k=1

∑
i∈Ik

{
γ̂k(t,Xi) +

Yi − γ̂k(t,Xi)

p̂k(t|Xi)
Kh(Ti − t)

}
Khx(X1i − x1)

f̂X1(x1)
,

where Kh(T −t) ≡ k((T −t)/h)/h with a suitable second-order symmetric kernel function k(·) and
a bandwidth h, and f̂X1(x1) = n−1

∑n
i=1Khx(X1i − x1). A uniform inference theory for µ̂(t, x1) or

∂µ̂(t, x1)∂t could be an alternative approach to our method. This interesting extension is beyond

the scope of the paper and is worthy of a separate research project.

7 Conclusion

In this paper, we propose Cramér-von Mises-type tests for testing whether a mean potential out-

come is weakly monotonic in a continuously distributed treatment under a weak unconfoundedness

assumption. To flexibly employ nonparametric or machine learning estimators in the presence of

possibly high-dimensional nuisance parameters, we propose a double debiased machine learning

estimator for the moments entering the test. Furthermore, we extend our method to testing mono-

tonicity conditional on observed covariates. We also investigate the test’s finite sample behavior

in a simulation study and find that it performs decently under our suggested choices of tuning

parameters.

As an empirical illustration, we apply our test to the Job Corps study, investigating the associ-

ations of several labor market outcomes (earnings, employment, and hours worked) with hours in

training as the treatment. We find that an increase in the treatment does either increase or at least

not reduce the outcome. When splitting the treatment range into subsets, our testing results are

consistent with a concave mean potential outcome-treatment dependence, implying that initially

stronger marginal treatment effects decrease as the treatment value (i.e., hours already spent in

training) increases.
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APPENDIX

A Gateaux derivative limit

Let f 0 be the true pdf of Z = (Y, T,X) and fh
Z be a pdf approaching a point mass at Z as

h → 0. Consider f τh = (1 − τ)f 0 + τfh
Z for τ ∈ [0, 1]. Colangelo and Lee (2022) derive the

Gateaux derivative of µ(t) with respect to a deviation from the true distribution fh
Z − f 0 to be

γ(t,X)− µ(t) + Y−γ(t,X)
p(t,X)

fh
T (t). Since ν(t, r) ≡

∫ t+r

t
µ(s)ds is a linear functional of µ, the Gateaux

derivative limit of ν(t, r) is

lim
h→0

∫ t+r

t

{
γ(s,X)− µ(s) +

Y − γ(s,X)

p(s,X)
fh
T (s)

}
ds

=

∫ t+r

t

γ(s,X)ds− ν(t, r) +
Y − γ(T,X)

p(T,X)
1(T ∈ [t, t+ r]), (A.1)

and it follows that

ν(t, r) = E

[∫ t+r

t

γ(s,X)ds+
Y − γ(T,X)

p(T,X)
1(T ∈ [t, t+ r])

]
. (A.2)

Conditional ADF: By the same arguments as for the identification of the unconditional ADF

µ(t), we identify the conditional ADF µ(t, x1) =
∫
X2
γ(t, x1, x2)fX2|X1(x2|x1)dx2. Let the Dirac

delta function δt(s) = ∞ for s = t, δt(s) = 0 for s ̸= t, and
∫
g(s)δt(s)ds = g(t), for any continuous

compactly supported function g. Write

µ(t, x1) =

∫
X

∫
T
γ(s, x̃1, x2)δt(s)dsfX2|X1(x2|x̃1)δx1(x̃1)dx̃1dx2

=

∫
X

∫
T

∫
Y
yδt(s)δx1(x̃1)fY |TX(y|s, x̃1, x2)fX2|X1(x2|x̃1)dydsdx̃1dx2.

Following Colangelo and Lee (2022), we derive the Gateaux derivative of µ(t, x1) with respect to

a deviation from the true distribution fh
Z − f 0 by

d

dτ
µ(t, x1) =

∫
X

∫
T

∫
Y
yδt(s)δx1(x̃1)

d

dτ

(
fZ(y, s, x̃1, x2)fX(x̃1, x2)

fTX(s, x̃1, x2)fX1(x̃1)

)
dydsdx̃1dx2

=

∫
X

∫
T

∫
Y
yδt(s)δx1(x̃1)

{
fX(x̃1, x2)

fTX(s, x̃1, x2)fX1(x̃1)

(
−f 0

Z(y, s, x̃1, x2) + fh
Z(y, s, x̃1, x2)

)
−
fZ(y, s, x̃1, x2)fX2|X1(x2|x̃1)

fTX(s, x̃1, x2)2
(
−f 0

TX(s, x̃1, x2) + fh
TX(s, x̃1, x2)

)
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+
fZ(y, s, x̃1, x2)

fTX(s, x̃1, x2)fX1(x̃1)

(
− f 0

X(x̃1, x2) + fh
X(x̃1, x2)

− fX(x̃1, x2)

fX1(x̃1)

(
−f 0

X1
(x̃1) + fh

X1
(x̃1)

) )}
dydsdx̃1dx2

= −µ(t, x1) +
Y fh

TX1
(t, x1)

fT |X(t, x1, X2)fX1(x1)
+ µ(t, x1)−

γ(t, x1, X2)f
h
TX1

(t, x1)

fT |X(t|x1, X2)fX1(x1)

− µ(t, x1) + γ(t, x1, X2)
fh
X1
(x1)

fX1(x1)
+ µ(t, x1)− µ(t, x1)

fh
X1
(x1)

fX1(x1)

=
Y − γ(t, x1, X2)

fT |X(t|x1, X2)

fh
TX1

(t, x1)

fX1(x1)
+ (γ(t, x1, X2)− µ(t, x1))

fh
X1
(x1)

fX1(x1)
. (A.3)

Since ν(t, x1, r) ≡
∫ x1+r

x1

∫ t+r

t
µ(s, x̃1)fX1(x̃1)dsdx̃1 = E

[∫ t+r

t
µ(s,X1)ds1(X1 ∈ [x1, x1 + r])

]
is

a linear functional of µ, the Gateaux derivative limit of ν(t, x1, r) is

lim
h→0

∫ x1+r

x1

∫ t+r

t

{
(γ(s, x̃1, X2)− µ(s, x̃1))

fh
X1
(x̃1)

fX1(x̃1)
+
Y − γ(s, x̃1, X2)

p(s, x̃1, X2)

fh
TX1

(s, x̃1)

fX1(x̃1)

}
fX1(x̃1)dsdx̃1

=

{∫ t+r

t

γ(s,X)ds−
∫ t+r

t

µ(s,X1)ds+
Y − γ(T,X)

p(T,X)
1(T ∈ [t, t+ r])

}
1(X1 ∈ [x1, x1 + r]).

It follows that

ν(t, x1, r) = E

[{∫ t+r

t

γ(s,X)ds+
Y − γ(T,X)

p(T,X)
1(T ∈ [t, t+ r])

}
1(X1 ∈ [x1, x1 + r])

]
. (A.4)

So we obtain νj(ℓx) = ν(tj, x1, 1/q) = E [ϕj,q(Z)1(X1 ∈ [x1, x1 + r])].

B Appendix for Section 3

Proof of Theorem 3.1:

We give an outline of deriving the asymptotically linear representation, following Chernozhukov

et al. (2018). Let ν(t, r) =
∫ t+r

t
µ(s)ds, γi ≡ γ(Ti, Xi), and λi ≡ λ(Ti, Xi) = 1/fT |X(Ti|Xi). Let

ϕ(t,r)(Zi, γ, λ) ≡
∫ t+r

t

γ(s,Xi)ds+ (Yi − γ(Ti, Xi))λ(Ti, Xi)1(Ti ∈ [t, t+ r]).

29



So ν̂(t, r) = n−1
∑n

i=1 ϕ(t,r)(Zi, γ̂, λ̂). To show Theorem 3.1, it is sufficient to show that uniformly

over (t, r) ∈ [0, 1]2,

√
n(ν̂(t, r)− ν(t, r)) =

1√
n

n∑
i=1

ϕt,r(Zi, γ, λ)− ν(t, r) + oP (1). (B.1)

Let Zc
k denote the observations Zi for i ̸= Ik and γ̂ik = r̂k(Ti, Xi) using Zc

k for i ∈ Ik. We

decompose the remainder term

√
n
1

n

n∑
i=1

{
ϕ̂(t,r)(Zi, γ̂, λ̂)− ϕ(t,r)(Zi, γ, λ)

}
=

1√
n

K∑
k=1

∑
i∈Ik

{∫ t+r

t

(γ̂k(s,Xi)− γ(s,Xi)) ds− E

[∫ t+r

t

(γ̂k(s,Xi)− γ(s,Xi)) ds

∣∣∣∣Zc
k

]
(R1-1)

+ 1(Ti ∈ [t, t+ r])λi(γi − γ̂ik)− E
[
1(Ti ∈ [t, t+ r])λi(γi − γ̂ik)

∣∣Zc
k

]
(R1-2)

+ 1(Ti ∈ [t, t+ r])(λ̂ik − λi)(Yi − γi)− E
[
1(Ti ∈ [t, t+ r])(λ̂ik − λi)(Yi − γi)

∣∣Zc
k

]}
(R1-3)

+
√
n

{
E

[∫ t+r

t

(γ̂k(s,Xi)− γ(s,Xi))ds

∣∣∣∣Zc
k

]
− E [1(Ti ∈ [t, t+ r])λi(γ̂ik − γi)|Zc

k]

+ E[(λ̂ik − λi)1(Ti ∈ [t, t+ r])(Yi − γi)|Zc
k]

}
(R1-DR)

− 1√
n

K∑
k=1

∑
i∈Ik

1(Ti ∈ [t, t+ r])
(
λ̂ik − λi

)(
γ̂ik − γi

)
. (R2)

The remainder terms (R1-1), (R1-2) and (R1-3) are stochastic equicontinuous terms that are

controlled to be oP (1) by the mean-squared consistency conditions in Assumption 3.1(i) and cross-

fitting. The second-order remainder term (R2) is controlled by Assumption 3.1(ii). By the law of

iterated expectations, E
[ ∫ t+r

t

(
γ̂k(s,X)−γ(s,X)

)
ds
∣∣∣Zc

k

]
= E

[
λ(T,X)

(
γ̂k(T,X)−γ(T,X)

)
1(T ∈

[t, t+ r])
∣∣∣Zc

k

]
. So (R1-DR) is zero.

To show (R1-1), (R1-2) and (R1-3) are oP (1) uniformly over ℓ, we show these terms weakly

converge to Gaussian processes indexed by ℓ with zero covariance kernel. It suffices to show the

results with 1(Ti ≤ t) replacing 1(Ti ∈ [t, t + r]). We apply the functional central limit theorem

in Theorem 10.6 in Pollard (1990). Following the notation in Pollard (1990), for any ω in the

probability space Ω and for i ∈ Ik, define fi(t) = fi(ω, t) = 1(Ti ≤ t)λi(γ̂ik − γi) for (R1-2) and

fni(t) = fi(t)/
√
n. Due to cross-fitting, the processes from the triangular array {fni(t)} given Zc

k

are independent within rows. Let nk =
∑n

i=1 1(i ∈ Ik). Since K is fixed, n/nk = O(1). We verify
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the conditions in Theorem 10.6 in Pollard (1990).

(i) {1(Ti ≤ t) : t ∈ [0, 1], i ∈ Ik} is manageable since it is monotone increasing in t (p.221 in

Kosorok (2008)). The triangular array processes {fni(t)} are manageable with respect to

the envelopes Fni =
∣∣λi(γ̂ik − γi)

∣∣/√n. Fnk
= (Fn1, ..., Fnnk

)′ is an Rnk-valued function on

the underlying probability space.

(ii) Let Xn(t) = Xn(ω, t) =
∑

i∈Ik

(
fni(t)− E

[
fni(t)

∣∣Zc
k

])
. By construction and independence

of Zc
k and zi, i ∈ Ik, E[fni(t)|Zc

k] = 0 and E[fni(t)fnj(t)|Zc
k] = 0 for i, j ∈ Ik. For i ∈ Ik,

E[fi(t)
2|Zc

k] = OP (∥γ̂ik − γi)∥22) = oP (1) by Assumption 3.1(i) and (iii). Let s ≤ t ∈
[0, 1], without loss of generality. H(s, t) = limn→∞E

[
Xn(s)Xn(t)

∣∣Zc
k

]
= limn→∞E

[
1(T ∈

(s, t])λ2i (γ̂ik − γi)
2
∣∣Zc

k

]
= 0.

(iii) By the argument in (ii), H(t, t) = 0.

(iv) For each ϵ > 0,∑
i∈Ik

E[F 2
ni1(Fni ≥ ϵ)|Zc

k] ≤
∑
i∈Ik

E[F 2
ni|Zc

k] = OP

(
∥γ̂k − γ∥22]

)
= oP (1).

(v) For any s < t,

ρn(s, t)
2 =

∑
i∈Ik

E
[
|fni(s)− fni(t)|2

∣∣∣Zc
k

]
=
∑
i∈Ik

E[1(Ti ∈ (s, t])λi(γ̂ik − γi)
2|Zc

k]

=
∑
i∈Ik

∫
X

∫ t

s

λ(Ti, Xi)(γ̂k(Ti, Xi)− γ(Ti, Xi))
2fTX(Ti, Xi)dTidXi

.I = OP

(∫
X

∫
T
(γ̂k(Ti, Xi)− γ(Ti, Xi))

2fTX(Ti, Xi)dTidXi

)
= OP

(
∥γ̂k − γ∥22

)
by the definition of ∥·∥2 and Assumption 3.1(iii). By Assumption 3.1(i), ρ(s, t) = limn→∞ ρn(s, t) =

0. The condition (v) holds: for all deterministic sequences {sn} and {tn}, if ρ(sn, tn) → 0

then ρn(sn, tn) → 0.

Then Theorem 10.6 in Pollard (1990) implies that the finite dimensional distributions of Xn

have Gaussian limits, with zero means and covariances given by H. Therefore, Xn = oP (1)

uniformly over t ∈ [0, 1].
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The analogous results also hold for fi(t) = 1(Ti ≤ t)(λ̂ik − λi)(Yi − γi) in (R1-3). In par-

ticular, for (R1-3), E[fni(t)
2|Zc

k] = OP

(
∥λ̂k − λ∥22

)
= oP (1) by the smoothness condition and

Assumption 3.1(i).

For (R1-1), define fi(t) =
∫ t

0
(γ̂k(s,Xi)− γ(s,Xi)) ds.

Note that we can express
∫ t+r

t
γk(s,Xi)ds = E [γ(T,X)1(T ∈ [t, t+ r])/p(T,X)|X = Xi] . So

E[fi(t)
2|Zc

k] ≤
∫ (

E

[
(γ̂k(T,X)− γ(T,X))

p(T,X)
1(T ≤ t)

∣∣∣X = x

])2

fX(x)dx

≤
∫
E

[(
γ̂k(T,X)− γ(T,X)

p(T,X)
1(T ≤ t)

)2 ∣∣∣X = x

]
fX(x)dx

=

∫ ∫ (
γ̂k(s, x)− γ(s, x)

p(s, x)

)2

1(s ≤ t)p(s, x)dsdx

= OP

(∫ ∫
(γ̂k(s, x)− γ(s, x))2 p(s, x)dsdx

)
= oP (1)

and the last equality holds by Assumption 3.1(i).

For (R2),

E

[
sup
ℓ

∣∣∣n−1/2
∑
i∈Ik

1(Ti ∈ [t, t+ r])(λ̂ik − λi)(γi − γ̂ik)
∣∣∣∣∣∣∣Zc

k

]
≤

√
n

∫
X

∫
T
sup
ℓ

1(Ti ∈ [t, t+ r])
∣∣∣(λ̂ik − λi)(γi − γ̂ik)

∣∣∣fTX(Ti, Xi)dTidXi

≤
√
n
(∫

X

∫
T
(λ̂ik − λi)

2fTX(Ti, Xi)dTidXi

)1/2(∫
X

∫
T
(γ̂ik − γi)

2fTX(Ti, Xi)dTidXi

)1/2
p−→ 0 (B.2)

by Cauchy-Schwartz inequality and Assumption 3.1(ii). By the conditional Markov and triangle

inequalities, (R2)
p−→ 0 uniformly over ℓ.

The triangle inequality yields the asymptotically linear representation n−1/2
∑n

i=1

(
ϕ̂t,r(Zi, γ̂, λ̂)−

ϕt,r(Zi, γ, λ)
)
= oP (1), and (B.1) follows.

Then by the fact that ν(ℓ) = ν(t1, q
−1) − ν(t2, q

−1), it follows that uniformly over ℓ ∈ L,
√
n(ν̂(ℓ)− ν(ℓ)) = n−1/2

∑n
i=1 ϕℓ(Zi) + oP (1), and this shows the first half of Theorem 3.1.

For the second part, similar to Hsu et al. (2019), it is straightforward to see that {ϕℓ(Z) : ℓ ∈ L}
is a VC class of functions and by functional central limit theorem of Pollard (1990), it follows that
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√
n(ν̂(·)− ν(·)) ⇒ ΦhDML

(·) where ΦhDML
(·) is a Gaussian process with variance-covariance kernel

hDML(ℓ1, ℓ2) = E[ϕℓ1(Z)ϕℓ2(Z)].

Finally, the approximation error of the Riemann sum is

∣∣M−1

M∑
m=1

γ̂k(tm, Xi)−
∫ t+r

t

γ̂k(s,Xi)ds
∣∣ ≤M−1

M∑
m=1

∣∣γ̂k(tm, Xi)− γ̂k(tm−1, Xi)
∣∣ = OP (M

−1),

assuming finite total variation of γ̂k with probability approach one. By the condition
√
n/M → 0,

the approximation error is asymptotically ignorable. □

Lemma B.1 Suppose the Assumptions 2.1, 3.1 and 3.2 hold. Then, supℓ∈L |σ̂ν(ℓ) − σν(ℓ)|
p→ 0

where σ2
ν(ℓ) = E[ϕ2

ℓ ], and Φ̂u
ν⇒ΦhDML

conditional on sample path w.p.a.1.

Proof of Lemma B.1:

The fact that {ϕℓ : ℓ ∈ L} is a VC type class of functions implies that {ϕ2
ℓ : ℓ ∈ L} is also a VC

type. In addition, given that E[ϕ̄2+δ] < ∞, we have by the uniform weak law of large numbers

that supℓ∈L |σ̃2
ν(ℓ)−σ2

ν(ℓ)|
p→ 0, where σ̃2

ν(ℓ) = n−1
∑n

i=1 ϕ
2
ℓ(Zi). By Assumption 3.1, we have that

supℓ∈L |σ̃2
ν(ℓ)− σ̂2

ν(ℓ)|
p→ 0. Then the first part follows. The proof of the second part follows from

the standard arguments for the multiplier bootstrap such as Lemma 4.1 of Hsu (2017), and is

omitted for the sake of brevity. □

Proof of Theorem 3.2:

The proof of Theorem 3.2 follows from the same arguments as Theorem 5.1 of Hsu (2017) once

Theorem 3.1 and Lemma B.1 are established, and is omitted for the sake of brevity. □

C The SUZ method

Equation (3.2) in SUZ or Equation (1) in Colangelo and Lee (2022) shows that

µ(t) ≡ E[Y (t)] = lim
h→0

E

[
(Y − γ(t, x))Kh(Tj − t)

p(t, x)
+ γ(t, x)

]
,

where p(t, x) ≡ fT |X(t|x), γ(t, x) ≡ E[Y |X = x, T = t], and Kh(T − t) ≡ k((T − t)/h)/h uses a

suitable second-order symmetric kernel function k(·) with a bandwidth h.

SUZ propose the following three-stage procedure to estimate µ(t) and the average partial effect

θ(t) ≡ dµ(t)/dt. We briefly describe the estimation procedure proposed in SUZ and refer readers

to SUZ for details.

33



1. Estimate γ(t, x) and p(t, x) by γ̂(t, x) and p̂(t, x) respectively with the first-stage bandwidth

h1.

2. Estimate µ(t) by

µ̂(t) =
1

n

n∑
i=1

{
Y − γ̂(t,Xi)

p̂(t,Xi)
Kh2 (Ti − t) + γ̂(t,Xi)

}

with the second-stage bandwidth h2.

3. Estimate θ(t) by θ̂(t) which is the estimator of the slope coefficient in the local linear regres-

sion of µ̂(Ti) on Ti.

Let σ(t) be the standard deviation of
√
nh32θ̂(t). We estimate σ(t) by σ̂(t) based on the

asymptotic property of θ̂(t); see the equation after Theorem 3.5 of SUZ. We next follow Fan et al.

(2022) and propose the following algorithm to test the average partial effect θ(t).

1. Compute θ̂(t) and σ̂(t) for a suitably fine grid over T .

2. Compute θ̂b(t), the multiplier bootstrap version of θ̂(t), over the same grid for b = 1, . . . , B,

while generating a new set of i.i.d. random variables {ηi}ni=1 from the distribution of η such

that it has sub-exponential tails and unit mean and variance in each step b.

3. For b = 1, . . . , B, compute

M1-sided
b = sup

t∈T

√
nh32(θ̂

b(t)− θ̂(t))

σ̂(t)
,

where the supremum is approximated by the maximum over the chosen grid points.

4. Given a confidence level 1 − α, find the empirical (1 − α) quantile of the sets of numbers

{M1-sided
b : b = 1, . . . , B} and denote the quantile as Ĉ1-sided

α .

5. The decision rule is given by

Reject H ′′
0 if min

t∈T

(
θ̂(t) + Ĉ1-sided

α

σ̂(t)√
nh32

)
< 0.
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Table 9: Descriptive statistics for selected covariates, treatment, and outcomes

variable mean median minimum maximum nonmissing

female 0.432 0.495 0.000 1.000 4166
age 18.325 21.42 16.000 24.000 4166

White 0.249 0.433 0.000 1.000 4166
Black 0.502 0.500 0.000 1.000 4166

Hispanic 0.172 0.378 0.000 1.000 4166
years of education 10.045 1.535 0.000 20.000 4102

married 0.016 0.126 0.000 1.000 4166
has children 0.178 0.382 0.000 1.000 4166
ever worked 0.145 0.352 0.000 1.000 4166

mean gross weekly earnings 19.429 97.749 0.000 2000.000 4166
household size 3.536 2.006 0.000 15.000 4101

mother’s years of education 11.504 2.599 0.000 20.000 3397
father’s years of education 11.459 2.900 0.000 20.000 2604

welfare receipt during childhood 2.064 1.189 1.000 4.000 3871
poor or fair general health 0.124 0.330 0.000 1.000 4166

physical or emotional problems 0.043 0.203 0.000 1.000 4166
extent of marijuana use 2.540 1.549 0.000 4.000 1534

extent of smoking 1.526 0.971 0.000 4.000 2171
extent of alcohol consumption 3.140 1.210 0.000 4.000 2383

ever arrested 0.241 0.428 0.000 1.000 4166
recruiter support 1.592 1.059 1.000 5.000 4068

idea about desired training 0.839 0.368 0.000 1.000 4166
expected months in Job Corps 6.622 9.794 0.000 36.000 4166

hours in training (T ) 1192.130 966.945 0.857 6188.571 4166
weekly earnings in fourth year (Y ) 215.521 202.619 0.000 1879.172 4024
weekly earnings in quarter 16 (Y ) 220.933 223.078 0.000 1970.445 4015

weekly hours worked in quarter 16 (Y ) 28.187 22.746 0.000 84.000 4102
employed in week 208 (Y ) 0.627 0.484 0.000 1.000 4007
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