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1. Introduction

There is a long history of model selection methods in the econometric

and statistical literature. The traditional model selection criteria such as

the Akaike information criterion and Bayesian information criterion aim to

choose one single model based on its global fit. The selected model pro-

vides the best approximation to the unknown true data generating process,

but it may not be ideal for estimating a specific model parameter under

consideration. For example, Hansen (2005) showed that finite-sample opti-

mal model selection might be quite sensitive to the choice of parameter of

interest. Claeskens, Croux, and Van Kerckhoven (2006) gave some specific

examples in biostatistics in which no single model is good for every patient

subgroup. Instead of choosing one single model to explain all aspects of

data, the focused information criterion (FIC; Claeskens and Hjort, 2003)

aims to select a model based on the parameter under focus, and allows

different models to be chosen for different parameters of interest.

Since the seminal work of Claeskens and Hjort (2003), the FIC has been

investigated in different models, including the Cox hazard regression model

(Hjort and Claeskens, 2006), the general semiparametric model (Claeskens

and Carroll, 2007), the generalized additive partial linear model (Zhang

and Liang, 2011), the varying-coefficient partially linear measurement er-



ror model (Wang, Zou, and Wan, 2012), the Tobin model with a nonzero

threshold (Zhang, Wan, and Zhou, 2012), the partially linear single-index

model (Yu et al., 2013), the linear mixed-effects model (Chen, Zou, and

Zhang, 2013), generalized empirical likelihood estimation (Sueishi, 2013),

the graphical model (Pircalabelu, Claeskens, and Waldorp, 2015), propen-

sity score weighted estimation of the treatment effects (Lu, 2015; Kitagawa

and Muris, 2016), the choice between parametric and nonparametric mod-

els (Jullum and Hjort, 2017), generalized method of moments estimation

(DiTraglia, 2016; Chang and DiTraglia, 2018), vector autoregressive models

(Lohmeyer et al., 2019), and others. It is well known that many of these

estimators share a common structure, which is useful in deriving the FIC in

different model setups. Therefore, it would be interesting to know whether

it is feasible to develop the FIC for various models in a unified theoretical

framework instead of in a case-by-case manner.

In this paper, we develop the FIC for a general class of estimators,

referred to as extremum estimators by Newey and McFadden (1994), that

maximizes the sample objective function. The goal is to evaluate and select

a model based on the parameter under focus in a general setting. We first

extend the asymptotic theory of extremum estimators for drifting sequences

of parameters, and demonstrate that the trade-off between bias and variance



remains in the asymptotic theory. We then follow Claeskens and Hjort

(2003) and propose the FIC for extremum estimators. The proposed FIC is

an asymptotically unbiased estimator of the asymptotic mean squared error

(AMSE) for the limiting distribution of the focus parameter estimate. Thus,

the FIC aims to choose the model that achieves the minimum estimated

AMSE. We apply our results to several examples and provide the FIC in

each case, including the nonlinear least squares estimator, the maximum

likelihood estimator, the generalized method of moments estimator, and

the minimum distance estimator.

As an alternative to model selection, a model averaging estimator in-

corporates all available information and constructs a weighted average of

the estimates across all potential models. There are two main model aver-

aging methods: Bayesian model averaging and frequentist model averaging;

see Hoeting et al. (1999), Claeskens and Hjort (2008), Moral-Benito (2015),

and Steel (2020) for a literature review. In this paper, we propose a plug-

in averaging method with data-driven weights for extremum estimators.

We first derive the limiting distribution of the averaging estimator with

fixed weights for the parameter under focus, and use this asymptotic result

to characterize the optimal weights of the averaging estimator under the

quadratic loss function. We then propose a plug-in method to estimate the



infeasible optimal weights, and use these estimated weights to construct a

frequentist model averaging estimator of the focus parameter.

We investigate the asymptotic and finite sample properties of the pro-

posed FIC and plug-in averaging method. We show that both the FIC and

estimated weights are asymptotically random under the local asymptotic

framework, and hence the FIC model selection estimator and the averaging

estimator with data-driven weights have nonstandard asymptotic distribu-

tions. We use a simple three-nested-model framework to illustrate the effect

of the estimated local parameter on asymptotic behavior of the FIC and

plug-in averaging method. In simulations, we compare the finite sample

performance of the FIC and plug-in averaging method with other existing

model selection and model averaging methods. In real data analysis, we

apply the proposed methods to investigate the relationship between income

and education. Both simulation studies and empirical results show that the

proposed methods perform well and generally achieve lower mean squared

errors than other methods.

The rest of the paper is organized as follows. Section 2 presents the

model, extremum estimators, and the asymptotic framework. Section 3 in-

troduces the FIC and plug-in averaging method for the extremum estimator

and studies their asymptotic behavior. Section 4 evaluates the asymptotic



and finite sample performance of the proposed methods. Section 5 con-

cludes the paper. Proofs are included in the supplementary materials.

2. Model framework and estimation

Let θ = (β′,γ ′)′ ∈ Θ ⊂ Rp+q denote a p+ q vector of unknown parameters,

where Θ is the set of possible parameter values. Suppose we have a sample

objective function Q̂n(θ) that depends on data and sample size n, and we

consider a general class of estimators, referred to as extremum estimators by

Newey and McFadden (1994), that maximizes this objective function. No-

tice that Q̂n(θ) could be a negative log-likelihood function, a least squares

function, a minimum-distance criterion function, and so on. For example,

if we set Q̂n(θ) =
1
n

∑n
i=1 mθ(xi), where mθ(·) is a real-value function of xi,

then the extremum estimator is an M-estimator, which includes the maxi-

mum likelihood estimator and nonlinear least squares estimator as special

cases. If we set Q̂n(θ) = −gn(θ)
′Wngn(θ), where Wn is a positive semi-

definite weight matrix and gn(θ) =
1
n

∑n
i=1 g(zi,θ) is a sample average of

moment functions, then the extremum estimator is the generalized method

of moments estimator.

Our goal is to select a model based on the parameter under focus in

a general setting that allows for parameter uncertainty. In our framework,



the candidate models could be nested or non-nested, and in each candidate

model, we are uncertain about which model parameters should be included

in the model. Without loss of generality, we assume that β is a p × 1

vector of “must-have” parameters that must be included in the model based

on theoretical grounds, and γ is a q × 1 vector of “potentially relevant”

parameters that may or may not be included in the model. Consider a

sequence of submodels indexed by s = 1, . . . , S, where the sth submodel

includes all β but some or none of the components γ. Since the true value

of γ could be zeros, we could restrict some elements of γ zeros to obtain

candidate models and allow for the parameter uncertainty. If we consider

a sequence of nested models, then we have S = q + 1 submodels. If we

consider all possible subsets of potentially relevant parameters γ, then we

have S = 2q submodels.

For the full model, we include all β and γ, while for the narrow model,

we only include β and set all γ to be zeros. We could also set some γ zeros

and consider an intermediate model between the full model and the narrow

model. Let γs denote the included elements of γ in the sth submodel, and

γsc the remaining elements of γ in the sth submodel. For the full model,

the unknown parameters are θ, and the extremum estimator of θ is

θ̂ = argmax
θ∈Θ

Q̂n(θ). (2.1)



For the sth submodel, the unknown parameters are ηs = (β′,γ ′
s)

′. Let

Πs be a (p+ qs)× (p+ q) projection matrix such that Πsθ = ηs, where qs

is the dimension of γs. Similarly, let Πsc be a projection matrix such that

Πscθ = γsc . Hence, we can write Q̂n(θ) as Q̂n(β,γs,γsc) and the extremum

estimator for the sth submodel is

θ̂s = Π′
sη̂s = argmax

θ∈Θ
Q̂n(β,γs,0), (2.2)

where 0 is a zero vector. Note that θ̂s is a (p+ q)×1 vector with the values

of γsc being zero.

We now state the regularity conditions required for asymptotic results,

where all limiting processes here and throughout the text are with respect

to n → ∞. Suppose that the objective function Q̂n(θ) converges uniformly

in probability to Q0(θ), and Q0(θ) is uniquely maximized at θ0 = (β′
0,γ

′
0)

′.

Define θ∗
0 = (β′

0,0
′)′ as the null points. Let

Hn(θ) =
∂2Q̂n(θ)

∂θ∂θ′ and H(θ) =
∂2Q0(θ)

∂θ∂θ′

be the Hessian matrix of second derivatives and the expected Hessian ma-

trix, respectively. Let
p→ and

d→ denote convergence in probability and

convergence in distribution, respectively. Let ∥ · ∥ denote the Euclidean

norm.



Assumption 1. (i) θ̂−θ0
p→ 0. (ii) θ0 is in the interior of Θ. (iii) Q̂n(θ)

is twice continuously differentiable in a neighborhood Θ0 ⊂ Θ of θ0. (iv)

√
n ∂

∂θ
Q̂n(θ0)

d→ N(0,Σ). (v) There is H(θ) that is continuous at θ0 for

every n, and supθ∈Θ ∥Hn(θ)−H(θ)∥ p→ 0. (vi) H(θ0) is nonsingular and

negative definite.

Assumption 1 is identical to conditions in Theorem 3.1 of Newey and

McFadden (1994). Assumption 1(i) assumes the consistency of θ̂, and this

condition holds under appropriate primitive assumptions; see the discus-

sions in Section 2 of Newey and McFadden (1994). Let H = H(θ0). Under

Assumption 1, Theorem 3.1 of Newey and McFadden (1994) demonstrates

the asymptotic normality of θ̂:

Zn ≡
√
n(θ̂ − θ0)

d→ Z ∼ N(0,H−1ΣH−1), (2.3)

where Z is a normal random vector and Σ is a positive definite matrix.

Assumption 2. Q̂n(θ) is three times differentiable in a neighborhood Θ∗
0 ⊂

Θ of θ∗
0, and the third partial derivative of Q̂n(θ) satisfies

sup
θ∗
0∈Θ∗

0

∂3Q̂n(θ)

∂θi∂θj∂θk
|θ=θ∗

0
= op(n

1/2).

Assumption 2 requires that the third partial derivative of the objective

function is bounded by n1/2. This condition holds for most models, and it



is similar to Condition C4 in Hjort and Claeskens (2003) and Condition A4

in Claeskens and Carroll (2007). The quantile regression model, however,

is excluded from our framework due to the failure of differentiability. For

the focused information criterion in the quantile regression framework, see

Behl, Claeskens, and Dette (2014) and Xu, Wang, and Huang (2014).

Assumption 3. γ0 ≡ γ0,n = δ0/
√
n where δ0 is an unknown constant

vector.

Assumption 3 specifies that γ0 is in a local n−1/2 neighborhood of zero,

and thus θ0 = (β′
0, δ

′
0/
√
n)′. This is a technique to ensure that the asymp-

totic mean squared error of each submodel estimator remains finite. The

local asymptotic framework is a technical device commonly used to analyze

the asymptotic and finite sample properties of the model selection esti-

mator, for example as in Hjort and Claeskens (2003), Leeb and Pötscher

(2005), and Claeskens and Hjort (2008). This assumption implies that all

of the submodels are close to each other as the sample size increases. The

assumption also has an advantage of yielding the same stochastic order of

squared biases and variances. Hence, the optimal model is the one that

achieves the best trade-off between bias and variance in this context. Al-

ternatively, other works use the assumption that the parameters decay in an

appropriate rate such that the squared biases and variances have the same



order; for example, see Hansen (2007) and Cheng, Ing, and Yu (2015).

In the standard asymptotics with fixed parameters setup, the model

bias tends to infinity with the sample size, and hence the asymptotic ap-

proximations break down. To obtain a useful approximation, we study per-

turbations of the model with the parameters γ being a local neighborhood

of zero. Let I denote an identity matrix. The following theorem presents

the asymptotic distribution of the extremum estimator for each submodel

in the local asymptotic framework.

Theorem 1. Suppose that Assumptions 1–3 hold. As n → ∞, we have

√
n(θ̂s−θ∗

0)
d→ HΠsHΠ0δ0+HΠsHZ ∼ N(HΠsHΠ0δ0,HΠsΣHΠs), (2.4)

where HΠs = Π′
s(ΠsHΠ′

s)
−1Πs and Π0 = (0q×p, Iq)

′.

Remark 1. Theorem 1 extends the asymptotic theory of extremum estima-

tors for drifting sequences of parameters, and it implies that the submodel

estimator θ̂s is root-n consistent. When we set Πs = Ip+q for the full model,

we have θ̂s = θ̂. In this case, our result (2.4) is simplified to the asymptotic

distribution of the full model estimator presented in (2.3), which corre-

sponds to Theorem 3.1 of Newey and McFadden (1994). Here, HΠsHΠ0δ0

and HΠsΣHΠs represent the asymptotic bias and the asymptotic variance

of the submodel estimator. Our theorem demonstrates that the trade-off



between squared biases and variances remains in the asymptotic theory,

and this feature is essential for the FIC and plug-in averaging method.

Remark 2. The proof of Theorem 1 is not a trivial extension of the already

existing results. Notice that we impose the condition that θ̂
p−→ θ0 instead

of the condition that θ̂s
p−→ θ∗

0. The former condition is imposed on the

full model only, but the latter condition is imposed on all candidate models.

To derive the asymptotic distribution of the submodel estimator θ̂s, we first

adopt a similar strategy in Fan and Li (2001) and Wang and Leng (2007)

and show that θ̂s−θ̂ = Op(n
−1/2). We then show that θ̂s is approximatively

a linear function of θ̂ as follows

θ̂s − θ∗
0 = ĤΠsĤ(θ̂ − θ0) + ĤΠsĤ(θ0 − θ∗

0) + op(n
−1/2), (2.5)

where ĤΠs = Π′
s(ΠsĤΠ′

s)
−1Πs and Ĥ = Hn(θ̂). Thus, if we multiply both

sides of (2.5) by
√
n, the first term converges to a normal distribution by

(2.3) and Slutsky’s theorem, and the second term converges to an asymp-

totic bias by Assumption 3. Thus, we demonstrate that the asymptotic

distribution of the submodel estimator is a linear function of the normal

random vector Z.



3. Focused information criterion and plug-in averaging method

In this section, we propose a focused information criterion for extremum

estimators. As an illustration, we apply the general results to the nonlin-

ear least squares (NLS) estimator. We also provide additional examples to

illustrate the general results in the supplementary materials, including the

maximum likelihood estimator, the generalized method of moments estima-

tor, and the minimum distance estimator. We next extend the idea of the

FIC from model selection to model averaging and develop a plug-in averag-

ing method for extremum estimators. In the last subsection, we study the

asymptotic behavior of the FIC and plug-in averaging method.

3.1 The FIC for extremum estimators

Empirical studies tend to focus on one particular parameter instead of as-

sessing the overall properties of the model. Unlike the traditional model

selection approaches, which assess the global fit of the model, we evaluate

the model based on the parameter under focus. Let µ = µ(θ) = µ(β,γ) be a

focus parameter, which is a smooth real-valued function. Notice that if µ de-

pends only on γ and the estimator in a model that set γ = 0, then Assump-

tion 1 (ii) does not hold. This is because the set Θ includes only one point

γ = 0, and there is no interior in the set Θ. Let µ0 = µ(θ0) = µ(β0, δ0/
√
n)



3.1 The FIC for extremum estimators

be the focus parameter evaluated at θ0. For the sth submodel, µ0 is es-

timated by µ̂s = µ(θ̂s). Assume that the partial derivatives of µ(θ) are

continuous in a neighborhood of θ∗
0. Let Dθ = (D′

β,D
′
γ)

′ be partial deriva-

tives evaluated at the null points θ∗
0, that is,

Dβ =
∂µ(θ)

∂β
|θ=θ∗

0
and Dγ =

∂µ(θ)

∂γ
|θ=θ∗

0
.

We aim to select a model with the lowest possible AMSE of µ̂s under

the quadratic loss function. We first derive the asymptotic distribution of

µ̂s for each submodel in the local asymptotic framework, and then define

the AMSE of µ̂s as the squared bias plus the variance of the asymptotic

distribution.

Corollary 1. Suppose that Assumptions 1–3 hold. As n → ∞, we have

√
n(µ̂s − µ0)

d→ Λs ≡ D′
θ(HΠsH− Ip+q)Π0δ0 +D′

θHΠsHZ

∼ N(D′
θ(HΠsH− Ip+q)Π0δ0,D

′
θHΠsΣHΠsDθ). (3.1)

From Corollary 1, a direct calculation yields

E(Λ2
s) = D′

θ(HΠsH− Ip+q)Π0δ0δ
′
0Π

′
0(HΠsH− Ip+q)

′Dθ

+D′
θHΠsΣHΠsDθ. (3.2)

Since Dθ depends on the focus parameter µ, we can use (3.2) to select a

proper submodel depending on the parameter of interest. To use (3.2) for



3.1 The FIC for extremum estimators

model selection, we need to replace the unknown parameters Dθ, H, Σ,

and δ0 with the sample analogs. The proposed FIC of the sth submodel is

defined as

FICs = D̂′
θ(ĤΠsĤ− Ip+q)Π0δ̂δ′Π′

0(ĤΠsĤ− Ip+q)
′D̂θ

+ D̂′
θĤΠsΣ̂ĤΠsD̂θ, (3.3)

which is an asymptotically unbiased estimator of the mean squared error

E(Λ2
s) in the sense that the mean of the asymptotic distribution of FICs

equals the mean squared error E(Λ2
s). Here, δ̂δ

′ is defined in the following

(3.5). In practice, we select the model with the lowest value of FICs.

We now discuss the sample analog estimators in (3.3). We first consider

the estimators in the second term of (3.3). Recall that θ̂ = (β̂′, γ̂ ′)′ is the

extremum estimator from the full model. Define D̂θ = ∂µ(θ)/∂θ|θ=θ̂∗ ,

where θ̂∗ = (β̂′,0′)′. Since θ̂ is a consistent estimator of θ0 by (2.3),

it follows that D̂θ is a consistent estimator of Dθ. For the covariance

matrix H, we can consistently estimate H by the sample analog Ĥ under

Assumption 1. Similarly, the covariance matrix Σ can also be consistently

estimated by the sample analog Σ̂.

We now consider the estimator for the local parameter δ0. Unlike Dθ,

H, and Σ, the consistent estimator for δ0 is not available due to the local

asymptotic framework. We can, however, construct an asymptotically un-



3.2 Example: Nonlinear least squares estimator

biased estimator of δ0 by using the extremum estimator from the full model.

The asymptotically unbiased estimator of δ0 is defined as δ̂ =
√
nγ̂. From

(2.3) and Assumption 3, we can show that

δ̂ − δ0 =
√
nΠ′

0(θ̂ − θ0)
d→ N(0,Π′

0H
−1ΣH−1Π0). (3.4)

As shown above, δ̂ is an asymptotically unbiased estimator of δ0. Therefore,

the asymptotically unbiased estimator of δ0δ
′
0 is

δ̂δ′ = δ̂δ̂′ −Π′
0Ĥ

−1Σ̂Ĥ−1Π0. (3.5)

3.2 Example: Nonlinear least squares estimator

Suppose the data (yi,x
′
i)
′ are i.i.d. Consider a nonlinear regression model

yi = h(xi,θ0) + ei, (3.6)

where θ0 is a vector of unknown parameters, the parametric regression

function h(xi,θ) is differentiable with respect to θ, and ei is an unobserv-

able regression error with E(ei|xi) = 0. If h(xi,θ0) = x′
iθ0, then we have

the classical linear regression model. The NLS estimator θ̂ maximizes the

following objective function

Q̂n(θ) = − 1

2n

n∑
i=1

(yi − h(xi,θ))
2, (3.7)

where 1/2 is a scale factor that has no effect on the asymptotic results. Note

that maximizing Q̂n(θ) is equivalent to minimizing the sum of squared



3.2 Example: Nonlinear least squares estimator

errors Sn(θ) =
∑n

i=1(yi − h(xi,θ))
2. Here the objective function Q̂n(θ)

converges to Q0(θ) = E(yi − h(xi,θ))
2/2. Thus,

Hn(θ) = − 1

n

n∑
i=1

(
∂

∂θ
h(xi,θ)

∂

∂θ′h(xi,θ)− (yi − h(xi,θ))
∂2

∂θ∂θ′h(xi,θ)

)
,

(3.8)

H(θ) = −E

(
∂

∂θ
h(xi,θ)

∂

∂θ′h(xi,θ)

)
+ E

(
(yi − h(xi,θ))

∂2

∂θ∂θ′h(xi,θ)

)
,

(3.9)

and

Σ = E

(
e2i

∂

∂θ
h(xi,θ0)

∂

∂θ′h(xi,θ0)

)
. (3.10)

From (3.6) and (3.9), we have H = H(θ0) = −E( ∂
∂θ
h(xi,θ0)

∂
∂θ′h(xi,θ0)).

By Theorem 1, it follows that

√
n(θ̂s − θ∗

0)
d→ HΠsH(Z+Π0δ0) ∼ N(HΠsHΠ0δ0,VΠs), (3.11)

where VΠs = HΠsΣHΠs and HΠs = Π′
s(ΠsHΠ′

s)
−1Πs. In the supplemen-

tary materials, we verify the high-level assumptions for the NLS estimator.

Thus, by Corollary 1, the FIC for the NLS estimator is defined as

FICs = D̂′
θ(ĤΠsĤ− Ip+q)Π0δ̂δ′Π′

0(ĤΠsĤ− Ip+q)
′D̂θ

+ D̂′
θV̂ΠsD̂θ, (3.12)

where D̂θ, Ĥ, and Σ̂ are the sample analogs of Dθ, H, and Σ, and δ̂δ′ is

the asymptotically unbiased estimator of δ0δ
′
0.



3.3 Plug-in averaging method

When the error term ei is homoskedastic, i.e., E(e2i |xi) = σ2, we have

Σ = −σ2H, and the covariance matrix VΠs is simplified as −σ2HΠs . In

this case, the FIC for the NLS estimator is defined as

FICs = D̂′
θ(ĤΠsĤ− Ip+q)Π0δ̂δ′Π′

0(ĤΠsĤ− Ip+q)
′D̂θ

− σ̂2D̂′
θĤΠsD̂θ, (3.13)

where σ̂2 is the sample analog of σ2.

3.3 Plug-in averaging method

In this section, we extend the idea of the FIC to the averaging estimator

and develop a plug-in averaging method for extremum estimators. We first

introduce the averaging estimator of the focus parameter. Let ws ≥ 0 be

the weight corresponding to the sth submodel and w = (w1, . . . , wS)
′ be a

weight vector belonging to the weight set W = {w ∈ [0, 1]S :
∑S

s=1 ws =

1}. That is, the weight vector lies in the unit simplex in RS. The model

averaging estimator of µ0 is defined as

µ̂(w) =
S∑

s=1

wsµ̂s. (3.14)

Note that the model selection estimator based on the information crite-

rion is a special case of the model averaging estimator. The FIC proposed

in (3.3) puts the whole weight on the model with the smallest value of the



3.3 Plug-in averaging method

FICs and gives other models zero weights. Thus, the weight function of

the FIC is ŵs = 1{FICs = min(FIC1,FIC2, . . . ,FICS)}, where 1{·} is an

indicator function that takes a value of either 0 or 1.

We now consider a general weight function instead of a zero-one weight

function. Instead of comparing the AMSE of each submodel, we first derive

the AMSE of the averaging estimator with fixed weight in a local asymptotic

framework. Next, we use this asymptotic result to characterize the optimal

weights of the averaging estimator under the quadratic loss function. We

then follow Wan, Zhang, and Wang (2014) and Liu (2015) and propose a

plug-in method to estimate the infeasible optimal weights. The following

theorem presents the asymptotic distribution of the averaging estimator

with fixed weights.

Theorem 2. Suppose that Assumptions 1–3 hold. As n → ∞, we have

√
n(µ̂(w)− µ0)

d→ N(D′
θB(w)Π0δ0, V (w)), (3.15)

where

B(w) =
S∑

s=1

ws(HΠsH− Ip+q)

and

V (w) =
S∑

s=1

w2
sD

′
θHΠsΣHΠsDθ + 2

∑∑
s ̸=r

wswrD
′
θHΠsΣHΠrDθ.



3.3 Plug-in averaging method

Theorem 2 shows the asymptotic normality of the averaging estimator

with fixed weights, and it implies that µ̂(w) is root-n consistent. The

asymptotic bias and variance of the averaging estimator are D′
θB(w)Π0δ0

and V (w), respectively.

From Theorem 2, the AMSE of the averaging estimator µ̂(w) is given

by

A(w) = w′Ψw, (3.16)

where Ψ is an S × S matrix with the (s, r)th element

Ψs,r = D′
θ (BsΠ0δ0δ

′
0Π

′
0B

′
r +HΠsΣHΠr)Dθ, (3.17)

and Bs = HΠsH− Ip+q. We then define the optimal fixed-weight vector as

wopt = arg min
w∈W

w′Ψw, (3.18)

which is the value that minimizes the AMSE of µ̂(w) overw ∈ W . Thus, the

averaging estimator with the optimal weights µ̂(wopt) achieves the minimum

AMSE in a class of averaging estimators defined by µ̂(w).

The optimal weight vector, however, is infeasible, since Ψ is unknown.

A feasible version of wopt could be obtained by replacing the unknown

parameters in Ψ with their sample analogs. As we discussed in Section 3.1,

the unknown parameters Dθ, H, and Σ can be consistently estimated by

the sample analogs. Notice that a consistent estimator for δ0 is not available
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due to the local-to-zero assumption. We therefore follow Wan, Zhang, and

Wang (2014) and Liu (2015) and propose a plug-in estimator of A(w) as

follows

Â(w) = w′Ψ̂w, (3.19)

where the (s, r)th element of Ψ̂ is

Ψ̂s,r = D̂′
θ

(
B̂sΠ0δ̂δ′Π′

0B̂
′
r + ĤΠsΣ̂ĤΠr

)
D̂θ, (3.20)

and δ̂δ′ is defined in (3.5). Notice that Â(w) is an asymptotically unbiased

estimator of A(w).

We now define the plug-in averaging method for extremum estimators.

The data-driven weights based on the plug-in method are defined as

ŵ = (ŵ1, . . . , ŵS)
′ = arg min

w∈W
w′Ψ̂w. (3.21)

When the number of submodels is S = 2, we have a closed-form solution to

(3.21), and when S > 2, the data-driven weights can be found numerically

via quadratic programming. We then use ŵ to construct a plug-in estimator

of µ0 as follows

µ̂(ŵ) =
S∑

s=1

ŵsµ̂s. (3.22)

As mentioned by Hjort and Claeskens (2003) and Liu (2015), we can

also estimate A(w) by inserting δ̂ for δ0 directly. Thus, the alternative



3.4 Asymptotic behavior of the FIC and plug-in averaging method

estimator of Ψs,r is

Ψ̃s,r = D̂′
θ

(
B̂sΠ0δ̂δ̂

′Π′
0B̂

′
r + ĤΠsΣ̂ĤΠr

)
D̂θ. (3.23)

As shown in Section 4, the plug-in averaging method based on (3.23) could

have better asymptotic and finite sample properties than the plug-in aver-

aging method based on (3.20).

3.4 Asymptotic behavior of the FIC and plug-in averaging method

In this section, we investigate the limiting distributions of the FIC and the

proposed averaging estimator µ̂(ŵ). As mentioned in the previous section,

D̂θ, Ĥ, and Σ̂ are consistent estimators for Dθ, H, and Σ, respectively,

and δ̂
d→ Zδ ∼ N(δ0,Π

′
0H

−1ΣH−1Π0) by (3.4). Therefore, it follows that

FICs
d→ D′

θ(HΠsH− Ip+q)Π0(ZδZ
′
δ −Π′

0H
−1ΣH−1Π0)Π

′
0(HΠsH− Ip+q)

′Dθ

+D′
θHΠsΣHΠsDθ. (3.24)

This result shows that the proposed FIC defined in (3.3) will not con-

verge in probability to the AMSE of µ̂s, although FICs is an asymptotically

unbiased estimator of E(Λ2
s) in (3.2). Furthermore, the above result implies

that the FIC model selection estimator has a nonstandard asymptotic dis-

tribution. The following corollary presents the limiting distribution of the

plug-in estimator µ̂(ŵ).
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Corollary 2. Suppose that Assumptions 1–3 hold. Assume that Ψ̂ and Ψ∞

are positive definite. As n → ∞, we have

ŵ
d→ w∞ = argmin

w∈W
w′Ψ∞w (3.25)

and

√
n(µ̂(ŵ)− µ0)

d→
S∑

s=1

w∞
s Λs, (3.26)

where Λs is defined in Corollary 1 and Ψ∞ is an S × S matrix with the

(s, r)th element

Ψ∞
s,r = D′

θ

(
BsΠ0(ZδZ

′
δ −Π′

0H
−1ΣH−1Π0)Π

′
0B

′
r +HΠsΣHΠr

)
Dθ.

(3.27)

Corollary 2 shows that the data-driven weights (3.21) will not converge

in probability to the optimal weights (3.18). Furthermore, the estimated

weights are asymptotically random under the local asymptotic framework.

This is because the estimate δ̂δ′ is random in the limit. Therefore, unlike

the asymptotic normality of the averaging estimator with fixed weights

presented in Theorem 2, the averaging estimator with data-driven weights

has a nonstandard asymptotic distribution. This non-normal nature of the

limiting distribution of the averaging estimator with data-driven weights

is pointed out by Hjort and Claeskens (2003) as well as Liu (2015). To

address the problem of inference after model averaging, we follow Claeskens
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and Carroll (2007), Zhang and Liang (2011), and Liu (2015) to construct a

valid confidence interval; see the discussion in the supplementary materials

for more details.

Remark 3. Notice that w′Ψ∞w is a convex minimization problem when

w′Ψ∞w is quadratic, Ψ∞ is positive definite, and W is convex. Hence,

w′Ψ∞w has a unique minimum; see Charkhi, Claeskens, and Hansen (2016)

for more discussion on the uniqueness of the weights. For the estimator

defined in (3.23), the estimated weights are still random in the limit since

we can show that

Ψ̃s,r
d→ D′

θ (BsΠ0ZδZ
′
δΠ

′
0B

′
r +HΠsΣHΠr)Dθ. (3.28)

Compared to (3.27), the alternative estimator Ψ̃s,r has a simpler limiting

distribution than the estimator Ψ̂s,r.

Remark 4. Using Theorem 2, we can easily apply the plug-in averaging

method to different model setups, and then obtain the asymptotic dis-

tribution of the plug-in estimator based on Corollary 2. For example, if

Q̂n(·) is the sum of squared errors with h(xi,θ0) = x′
iθ0, then Corollary 2

corresponds to Theorem 3 of Liu (2015). Or, if Q̂n(·) is the log-likelihood

function, then Corollary 2 corresponds to Theorem 1 of Charkhi, Claeskens,

and Hansen (2016).



4. Numerical study

In this section, we first evaluate the asymptotic performance of the FIC

and plug-in averaging method in a simple three-nested-model framework.

We next compare the finite sample performance of the proposed methods

with other existing model selection and model averaging methods via Monte

Carlo experiments. In the last subsection, we apply the proposed methods

to a real data analysis.

4.1 AMSE comparison

We evaluate the asymptotic performance of the different estimates of the

focus parameter µ based on the numerical calculation of the AMSE. We

consider a simple three-nested-model framework based on the model (3.6),

where the model specification is h(·) = exp(x′
iθ), p = 1, q = 2, M = 3,

δ0 = d(1.5, 1.25)′, and d varies on a grid between −4 and 4.

We consider the homoskedastic error and set σ2 = 1 and Σ = −σ2H,

where the diagonal elements of H are −1, and off-diagonal elements are

−0.5. The focus parameter is µ = θ1, and Dθ = (1, 0, 0)′ in this setting.

We compare the AMSE of the following estimators: (1) Narrow model esti-

mator (labeled Narrow); (2) Middle model estimator (labeled Middle); (3)

Full model estimator (labeled Full); (4) Averaging estimator with the opti-
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mal weights wopt defined in (3.6) (labeled W-opt); (5) FIC model selection

estimator (labeled FIC); (6) Plug-in averaging method based on (3.20) (la-

beled PIA-1); and (7) Plug-in averaging method based on (3.23) (labeled

PIA-2).

We briefly discuss how to calculate the AMSE for each estimator. The

narrow model sets both potentially relevant parameters to zero, that is,

θ2 = 0 and θ3 = 0. The middle model includes the first potentially relevant

parameter and sets the second potentially relevant parameter to zero, while

the full model includes both potentially relevant parameters. For these

submodel estimators, the AMSE is calculated based on (3.2). For W-opt,

we first compute the optimal weights based on (3.18), and then calculate the

AMSE by plugging the value of the optimal weights into (3.16). For the FIC,

the AMSE is approximated based on (3.24) by simulation averaging across

10,000 random samples. For PIA-1 and PIA-2, the AMSE is approximated

based on Corollary 2 by simulation averaging across 10,000 random samples.

We divide the AMSE of each estimator by that of W-opt and report the

relative AMSE for easy comparison. When the relative AMSE exceeds one,

it indicates that the specified estimator has larger AMSE than the averaging

estimator with the optimal weights.

Figure 1 presents the relative AMSEs of different estimators. We first
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Figure 1: Relative AMSE

compare the AMSEs between the submodel estimators and W-opt. As

we expected, the narrow model achieves a lower relative AMSE than the

other two submodels for smaller |d|, while the full model achieves a smaller

relative AMSE than the other two submodels for larger |d|. Therefore, the

best submodel, which has the lowest AMSE among the submodels, varies

with d. Compared to the three submodels, W-opt has much lower AMSEs

in most ranges of d. We next compare the AMSEs of FIC, PIA-1, and PIA-

2. The numerical results show that PIA-2 has a smaller relative AMSE than

PIA-1, and PIA-1 has a smaller relative AMSE than FIC. Notice that the

AMSE of PIA-2 is slightly larger than that of W-opt, which illustrates the
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effect of the estimated local parameter on asymptotic behavior of the plug-

in averaging method. Similarly, for a fixed value of d, the AMSE of FIC

is larger than that of the best submodel due to the absence of a consistent

estimator for the local parameter. We also compare the model weights of

W-opt, PIA-1, and PIA-2 in the supplementary materials.

4.2 Finite sample performance

We next investigate the finite sample performance of the proposed FIC and

plug-in averaging methods via Monte Carlo experiments. We consider a

nonlinear regression model:

yi = exp(x′
iβ + z′iγ) + ei, (4.1)

where xi = (x1i, . . . , xpi)
′ ∼ iid Uniform(−1, 1) and zi = (z1i, . . . , zqi)

′ ∼

iid Uniform(−1, 1). The error term is generated by ei = σiϵi, where ϵi is

generated from a log-normal distribution with mean zero and variance one.

For the homoskedastic simulation, we set σi = 1 , and for the heteroskedas-

tic simulation, we set σ2
i = 0.5 + 1.5x2

pi. The sample size is n = 100 or

250.

We let β = (β1, . . . , βp)
′ be the must-have parameters and γ = (γ1, . . . , γq)

′

the potentially relevant parameters. We set βj = c for j = 1, . . . , p,

where the parameter c varies on a grid between −2 and 2, and set γk =
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n−1/2((q − k + 1)/q) for k = 1, . . . , q. We consider a set of 2q non-nested

submodels and set p = 1, 2, or 3, and q = 3, 4, or 5. Thus, the numbers of

the models are S = 8, 16, and 32 for q = 3, 4, and 5, respectively.

In addition to FIC, PIA-1, and PIA-2 mentioned in the previous section,

we also consider the following estimators: (1) Akaike information criterion

model selection estimator (labeled AIC); (2) Bayesian information criterion

model selection estimator (labeled BIC); (3) Smoothed AIC model selection

estimator (labeled SAIC); and (4) Smoothed BIC model selection estimator

(labeled SBIC). Let σ̂2
s = 1

n

∑n
i=1 ê

2
si, where êsi is the NLS residual from

the model s. The AIC of the sth model is AICs = nlog(σ̂2
s) + 2(p + qs),

where p + qs is the number of parameters in the model s, while the BIC

of the sth model is BICs = nlog(σ̂2
s) + log(n)(p + qs). For AIC and BIC,

we select the model with the lowest value of AIC or BIC, respectively.

The SAIC estimator is proposed by Buckland, Burnham, and Augustin

(1997) and it uses the exponential AIC as the model weight. The SAIC

weight is proportional to the likelihood of the model and is defined as ŵs =

exp(−1
2
AICs)/

∑S
r=1 exp(−

1
2
AICr). The SBIC estimator is a simplified form

of Bayesian model averaging with diffuse priors, and the SBIC weight is

ŵs = exp(−1
2
BICs)/

∑S
r=1 exp(−

1
2
BICr).

Our focus parameter is µ = βp, which is the last element of the must-
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Figure 2: Relative MSE, homoskedastic errors, n = 100.

have parameters. To evaluate the finite sample behavior of each estimator,

we compare these estimators based on the mean squared error (MSE) of

µ̂. The MSE is calculated by the average of (µ̂ − µ)2 obtained from each

method over 5,000 replications. For easy comparison, we divide the MSE

of each method by that of the best-fitting submodel and report the relative

MSE. The best-fitting submodel is the model that has the lowest MSE

among all submodels. Therefore, lower relative MSE means better finite

sample performance. When the relative MSE exceeds one, it indicates that

the specified estimator performs worse than the best-fitting submodel.
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Figure 3: Relative MSE, homoskedastic errors, n = 250.

Figures 2 and 3 present the relative MSEs of different estimates in the

homoskedastic setup for n = 100 and 250, respectively. In each figure, the

relative MSEs are displayed for p = {1, 2, 3} and S = {8, 16, 32} in nine

panels, and in each panel, the relative MSEs are displayed for c between

−2 and 2. We first compare the finite sample performance of AIC, BIC,

SAIC, and SBIC. The simulation results show that BIC has a larger MES

than AIC for smaller |c| in all cases, while AIC has a larger MSE than

BIC for larger |c| when p = 2 and 3. SAIC and SBIC have lower MSEs

than AIC and BIC, respectively, and the pattern of relative performance
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between SAIC and SBIC is quite similar to that of AIC and BIC. We next

compare the finite sample performance of FIC, PIA-1, and PIA-2. The

results show that FIC, PIA-1, and PIA-2 perform quite well and have lower

MSEs than AIC, BIC, SAIC, and SBIC in most cases. PIA-2 performs

slightly better than PIA-1, and PIA-1 performs slightly better than FIC.

The relative performance of FIC, PIA-1, and PIA-2 in the finite sample is

consistent with our finding in the AMSE comparison presented in Figure 1.

4.3 Real data analysis

In this section, we apply the proposed FIC and plug-in averaging meth-

ods to investigate the relationship between income and education. We

employ Riphahn, Wambach, and Million (2003)’s German Socioeconomic

Panel data set, which is used to study the log-linear model for income in

Example 7.6 of Greene (2012). The data consist of 27,326 observations and

are available at the Journal of Applied Econometrics data archive website.

We follow Greene (2012) and use the last wave of the data set (year 1988)

to model incomes. After deleting two observations with zero income, we

have a sample of 4,481 observations. The dependent variable is the house-

hold monthly net income in German marks, and the explanatory variables

include years of schooling (Education), age in years (Age), female (1 = fe-
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male, 0 = male), and the quadratic and interaction terms of variables; see

Riphahn, Wambach, and Million (2003) for a detailed description of the

data.

We follow Greene (2012) and fit an exponential regression model to

the data. We assume that the constant term, Education, Age, and Female

are must-have regressors, and treat the quadratic and interaction terms of

variables as potentially relevant regressors. We consider all possible subsets

of potentially relevant regressors, which leads to a total of 32 non-nested

models. Our focus parameter is the coefficient of Education. We first

estimate the coefficient in each candidate model, and then apply the same

model selection and model averaging methods as those in the simulation

study.

Table 1 presents the estimation results based on model selection and

model averaging methods. The results show that all coefficients have the

same signs across different estimation methods except the estimated coeffi-

cient of Female by FIC. Furthermore, the coefficient estimates of Education

are quite similar across different estimators, while FIC/PIA-1 has a relative

larger/smaller coefficient estimate of Education.

We next follow Rolling, Yang, and Velez (2019) and perform a guided

simulation experiment to evaluate the different methods under the simula-
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Table 1: Estimation results

AIC BIC SAIC SBIC FIC PIA-1 PIA-2

Constant -3.5731 -3.4776 -3.5534 -3.4840 -2.2245 -3.0197 -3.0962

(0.2728) (0.3754) (0.2824) (0.3690) (0.8504) (0.3533) (0.4183)

Education 0.1249 0.1217 0.1242 0.1212 0.1279 0.1189 0.1239

(0.0308) (0.0452) (0.0322) (0.0447) (0.0384) (0.0323) (0.0305)

Age 0.0646 0.0624 0.0642 0.0627 0.0024 0.0408 0.0428

(0.0067) (0.0074) (0.0068) (0.0073) (0.0359) (0.0087) (0.0120)

Female 0.3941 0.2574 0.3661 0.2720 -0.0024 0.3388 0.3503

(0.1019) (0.1428) (0.1008) (0.1267) (0.1510) (0.0832) (0.0929)

Education2 -0.0044 -0.0045 -0.0045 -0.0045 -0.0029 -0.0023 -0.0025

(0.0011) (0.0015) (0.0011) (0.0015) (0.0015) (0.0011) (0.0011)

Age2 -0.0009 -0.0009 -0.0009 -0.0009 -0.0004 -0.0004

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Educ × Age 0.0012 0.0013 0.0012 0.0013

(0.0003) (0.0003) (0.0003) (0.0003)

Educ × Female -0.0224 -0.0212 -0.0221 -0.0211 -0.0206 -0.0210

(0.0058) (0.0093) (0.0061) (0.0087) (0.0065) (0.0059)

Age × Female -0.0029 -0.0023 -0.0004 -0.0022 -0.0024

(0.0015) (0.0014) (0.0014) (0.0007) (0.0013)

*Standard errors, reported in parentheses, are calculated using 1,000 bootstrap replications.

tion scenarios that are consistent with the data. The simulation scenario is

based on the submodel selected by AIC, BIC, or FIC. As shown in Table

1, the AIC chooses the full model, the BIC chooses the submodel that ex-

cludes the regressor Age × Female, and the FIC chooses the submodel that
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only includes the potentially relevant regressor Education2. For each model

selection method τ , we construct the samples as y∗i = exp(x′
iβ̂τ+z′τiγ̂τ )+e∗i ,

where z′τi are the potentially relevant regressors included in the submodel

selected by τ , β̂τ and γ̂τ are the estimated coefficients from the submodel

selected by τ , and e∗i is an i.i.d. random error. The random error is gen-

erated by e∗i = σ̂τϵi, where ϵi ∼ iid Lognormal(0, 1) and σ̂τ is the standard

error estimated from the submodel selected by τ . We then apply the model

selection and model averaging methods to the samples {y∗i ,xi, zi} and es-

timate the focus parameter µ, that is, the coefficient of Education. Notice

that the true value of µ is known for each choice of τ . From Table 1, the

true values of µ are 0.1249, 0.1217, and 0.1279 for the scenario under AIC,

BIC, and FIC, respectively.

Table 2 presents the guided simulation results for three scenarios. We

report the bias, the variance (Var), and the MSE of µ̂ based on 5,000 random

draws. The results show that all methods have small negative biases in all

scenarios, and model averaging methods achieve lower variances than model

selection methods in most scenarios. It is clear that AIC has a lower MSE

than BIC, and FIC has a lower MSE than AIC in all scenarios. The MSEs

of SAIC are similar to those of AIC, while the MSEs of SBIC are lower

than those of BIC. Both PIA-1 and PIA-2 perform quite well and have



Table 2: Guided simulation results

AIC scenario BIC scenario FIC scenario

Bias Var MSE Bias Var MSE Bias Var MSE

AIC -0.0690 0.0024 0.0072 -0.0684 0.0024 0.0071 -0.0702 0.0014 0.0063

BIC -0.1014 0.0022 0.0125 -0.0996 0.0022 0.0121 -0.0947 0.0005 0.0095

SAIC -0.0731 0.0019 0.0072 -0.0727 0.0019 0.0072 -0.0726 0.0009 0.0062

SBIC -0.0973 0.0014 0.0109 -0.0960 0.0014 0.0106 -0.0919 0.0003 0.0088

FIC -0.0686 0.0017 0.0064 -0.0680 0.0017 0.0063 -0.0699 0.0014 0.0062

PIA-1 -0.0703 0.0011 0.0060 -0.0688 0.0010 0.0058 -0.0816 0.0003 0.0070

PIA-2 -0.0639 0.0013 0.0054 -0.0631 0.0013 0.0053 -0.0703 0.0009 0.0058

lower MSEs than other methods in the AIC and BIC scenarios. For the

FIC scenario, PIA-2 performs better than PIA-1 and has the lowest MSE

among all methods.

5. Conclusion

In this paper, we investigate the limiting distribution of extremum estima-

tors in a local asymptotic framework and propose a focused information

criterion and a plug-in averaging method for extremum estimators. We

investigate the asymptotic and finite sample properties of the proposed se-

lection and averaging methods. We find that the limiting distributions of

the FIC model selection estimator and the averaging estimator with data-

driven weights are nonstandard due to the absence of a consistent estimator



for the local parameter. Our numerical results show that the proposed plug-

in averaging method achieves lower AMSE and MSE than other methods.

Supplementary Materials

The online supplementary materials include the proofs, additional examples

and numerical results, and the details for constructing a valid confidence

interval for the post-averaging estimator.
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S1. Proofs

Proof of Theorem 1: The proof has two steps. In the first step, we prove

θ̂s− θ̂ = Op(n
−1/2). In the second step, we show that θ̂s is approximatively

a linear function of θ̂, by which we get the conclusion of Theorem 1.

Step 1. By Assumptions 1 and 3 and Equation (2.3), we have

Π′
sΠsθ̂ − θ̂ = Op(n

−1/2). (S1.1)

For any θ ∈ Rp+q, by a Taylor expansion and the fact that ∂Q̂n(θ)/∂θ|θ=θ̂ =

0, we have

Q̂n(θ) = Q̂n(θ̂) +
1

2
(θ̂ − θ)′Hn(θ̂)(θ̂ − θ)

− 1

6

p+q∑
i=1

p+q∑
j=1

p+q∑
k=1

(
∂3Q̂n(θ)

∂θi∂θj∂θk
|θ=θ∗

)
(θ̂i − θi)(θ̂j − θj)(θ̂k − θk), (S1.2)

where θ∗ is a vector between θ̂ and θ. We then follow the argument in Fan

and Li (2001) and Wang and Leng (2007) to show that for any given ϵ > 0,

there exists a large positive constant Cs such that

liminf
n

Pr

{
inf

∥us∥=Cs

Q̂n

(
Π′

sΠsθ̂ + n−1/2us

)
< Q̂n

(
Π′

sΠsθ̂
)}

> 1− ϵ, (S1.3)

where us is a (p+ q)-dimensional vector with Πscus = 0 and ∥us∥ = Cs.

By (S1.1), (S1.2), and Assumption 2, it follows that

Q̂n(Π
′
sΠsθ̂) = Q̂n(θ̂) +

1

2
(θ̂ −Π′

sΠsθ̂)
′Hn(θ̂)(θ̂ −Π′

sΠsθ̂) + op(n
−1). (S1.4)
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Using (S1.1) and the fact that ∥us∥ = Cs, we have

Π′
sΠsθ̂ + n−1/2us − θ̂ = Op(n

−1/2). (S1.5)

Then by (S1.2), (S1.5), and Assumption 2, it follows that

Q̂n

(
Π′

sΠsθ̂ + n−1/2us

)
= Q̂n(θ̂) +

1

2

(
θ̂ −Π′

sΠsθ̂ − n−1/2us

)′
×Hn(θ̂)

(
θ̂ −Π′

sΠsθ̂ − n−1/2us

)
+ op(n

−1). (S1.6)

Subtracting (S1.4) from (S1.6), we have

Q̂n

(
Π′

sΠsθ̂ + n−1/2us

)
− Q̂n

(
Π′

sΠsθ̂
)

=
1

n

{
1

2
u′
sHn(θ̂)us − u′

sHn(θ̂)
√
n(θ̂ −Π′

sΠsθ̂) + op(1)

}
,

which together with (S1.1) and Assumption 1(v) implies (S1.3). Hence,

with probability at least 1 − ϵ, the maximizer θ̂s of Q̂n(β,γs,0) is in the

ball
{
Π′

sΠsθ̂ + n−1/2us : Πscus = 0, ∥us∥ = Cs

}
. Therefore, we have

θ̂s −Π′
sΠsθ̂ = Op(n

−1/2). (S1.7)

From (S1.1) and (S1.7), it follows that

θ̂s − θ̂ = Op(n
−1/2). (S1.8)

Step 2. Recall that ηs = (β′,γ ′
s)

′ and θ̂s = Π′
sη̂s. Let Q̃n(ηs) ≡

Q̂n(Π
′
sηs) = Q̂n(β,γs,0). By a Taylor expansion, Equation (S1.8), and
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Assumption 2, it follows that

∂Q̃n(ηs)

∂ηs

|ηs=η̂s =
∂Q̂n(Π

′
sηs)

∂ηs

|ηs=η̂s = Πs
∂Q̂n(Π

′
sηs)

∂(Π′
sηs)

|Π′
sηs=Π′

sη̂s

= Πs
∂Q̂n(θ)

∂θ
|θ=θ̂s

= Πs

{
∂Q̂n(θ)

∂θ
|θ=θ̂ +Hn(θ̂)(θ̂ −Π′

sη̂s) + op(n
−1/2)

}
. (S1.9)

By inserting ∂Q̃n(ηs)/∂ηs|ηs=η̂s = 0 and ∂Q̂n(θ)/∂θ|θ=θ̂ = 0 into (S1.9),

we have

θ̂s = Π′
sη̂s = Π′

s

(
ΠsHn(θ̂)Π

′
s

)−1

ΠsHn(θ̂)θ̂ + op(n
−1/2). (S1.10)

Therefore, we have

√
n(θ̂s − θ∗

0) = Π′
s

(
ΠsHn(θ̂)Π

′
s

)−1

ΠsHn(θ̂)
√
nθ̂ −

√
nθ∗

0 + op(1)

= Π′
s

(
ΠsHn(θ̂)Π

′
s

)−1

ΠsHn(θ̂)
√
n(θ̂ − θ0)

+Π′
s

(
ΠsHn(θ̂)Π

′
s

)−1

ΠsHn(θ̂)
√
n(θ0 − θ∗

0) + op(1). (S1.11)

RecallΠ0 = (0q×p, Iq)
′. By Assumption 3, we have

√
n(θ0−θ∗

0) = (0′, δ′
0)

′ =

Π0δ0. Then by (2.3), (S1.11), and Assumption 1, we can obtain (2.4). This

completes the proof.

Proof of Corollary 1: By a Taylor expansion of µ(θ0) and µ(θ̂s)

about θ∗
0, it follows that

µ0 = µ(θ0) = µ(θ∗
0) +D′

γδ0/
√
n+ o(n−1/2),
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µ̂s = µ(θ̂s) = µ(θ∗
0) +D′

θ(θ̂s − θ∗
0) + o(n−1/2).

By the above two equations, Theorem 1 and the application of the delta

method, we have

√
n(µ̂s − µ0) = D′

θ

√
n(θ̂s − θ∗

0)−D′
γδ0 + op(1)

d→ D′
θHΠsHΠ0δ0 +D′

θHΠsHZ−D′
θΠ0δ0

= D′
θ(HΠsH− Ip+q)Π0δ0 +D′

θHΠsHZ.

This completes the proof.

Proof of Theorem 2: From Corollary 1, we observe that all of Λs

can be expressed in terms of the same normal vector Z. Therefore, there is

joint convergence in distribution of all
√
n(µ̂s − µ0) to Λs for s = 1, . . . , S.

Next, notice that the weights are nonrandom. Then, it follows that

√
n(µ̂(w)− µ0) =

S∑
s=1

ws

√
n(µ̂s − µ0)

d→
S∑

s=1

wsΛs ≡ Λ(w).

Thus, the asymptotic distribution of the averaging estimator is a weighted

average of the normal distributions, which is also a normal distribution.

By standard algebra, we can show the mean of Λ(w) as

E

(
S∑

s=1

wsΛs

)
=

S∑
s=1

wsE(Λs) =
S∑

s=1

wsD
′
θ(HΠsH− Ip+q)Π0δ0 = D′

θB(w)Π0δ0,

where B(w) =
∑S

s=1ws(HΠsH − Ip+q). We next show the covariance
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matrix of Λ(w). Let Bs = HΠsH − Ip+q. Then we can rewrite Λs as

Λs = D′
θBsΠ0δ0 +D′

θHΠsHZ. For any two submodels, we have

Cov(Λs,Λr) = E ((D′
θBsΠ0δ0 +D′

θHΠsHZ− E(D′
θBsΠ0δ0 +D′

θHΠsHZ))

× (D′
θBrΠ0δ0 +D′

θHΠrHZ− E(D′
θBrΠ0δ0 +D′

θHΠrHZ))′)

= E(D′
θHΠsHZZ′HHΠrDθ)

= D′
θHΠsΣHΠrDθ.

Therefore, the covariance matrix of Λ(w) is

V ar

(
S∑

s=1

wsΛs

)
=

S∑
s=1

w2
sV ar(Λs) + 2

∑∑
s ̸=r

wswrCov(Λs,Λr)

=
S∑

s=1

w2
sD

′
θHΠsΣHΠsDθ + 2

∑∑
s̸=r

wswrD
′
θHΠsΣHΠrDθ.

This completes the proof.

Proof of Corollary 2: We first show the limiting distribution of ŵ.

By Theorem 1, we have θ̂
p→ θ∗

0, which implies that D̂θ
p→ Dθ. Next,

by Theorem 4.1 of Newey and McFadden (1994), we have Ĥ
p→ H and

Σ̂
p→ Σ. Recall that δ̂

d→ Zδ = δ0 + Π′
0Z, where Z ∼ N(0,H−1ΣH−1).

Then, by the continuous mapping theorem and Slutsky’s theorem, it fol-

lows that Ψ̂s,r
d→ Ψ∞

s,r. Since all of Ψ∞
s,r can be expressed in terms of the

same normal vector Z, there is joint convergence in distribution of all Ψ̂s,r

to Ψ∞
s,r. Hence, it follows that w′Ψ̂w

d→ w′Ψ∞w. Note that w′Ψ∞w is a
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convex minimization problem when w′Ψ∞w is quadratic, Ψ∞ is positive

definite, and W is convex. Hence, the limiting process has a unique min-

imum. Therefore, by Theorem 3.2.2 of Van der Vaart and Wellner (1996)

or Theorem 2.7 of Kim and Pollard (1990), the minimizer ŵ converges in

distribution to the minimizer of w′Ψ∞w, which is w∞.

We next show the asymptotic distribution of µ̂(ŵ). Observe that there

is joint convergence in distribution of all µ̂s and ŵs, since both Λs and w∞

can be expressed in terms of the same normal vector Z. Therefore, it follows

that

√
n(µ̂(ŵ)− µ0) =

S∑
s=1

ŵs

√
n(µ̂s − µ0)

d→
S∑

s=1

w∞
s Λs.

This completes the proof.

S2. Verifications of Assumptions in the nonlinear least squares

estimator example.

We now verify the high-level assumptions for the nonlinear least squares

estimator in Section 3.2. Let S(θ) = E((yi − h(xi,θ))
2). For Assump-

tion 1(i), the primitive conditions are E(y2i ) < ∞, E|h(xi,θ0)|2 < ∞, and

S(θ) > S(θ0) for all θ ̸= θ0, and for Assumption 1(iv), a simple suffi-

cient condition is E(y4i ) < ∞, E|h(xi,θ0)|4 < ∞, E∥ ∂
∂θ
h(xi,θ)∥4 < ∞,

and E∥ ∂2

∂θ∂θ′h(xi,θ)∥4 < ∞; see p.777-778 of Hansen (2022) for a detailed
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discussion.

We next provide the primitive assumptions for Assumption 2. We can

show that

sup
θ∗
0∈Θ∗

0

∂3Q̂n(θ)

∂θl∂θj∂θk
|θ=θ∗

0

= sup
θ∗
0∈Θ∗

0

1

n

n∑
i=1

{
∂2h(xi,θ)

∂θl∂θj

∂h(xi,θ)

∂θk
|θ=θ∗

0
+

∂2h(xi,θ)

∂θl∂θk

∂h(xi,θ)

∂θj
|θ=θ∗

0

+
∂2h(xi,θ)

∂θj∂θk

∂h(xi,θ)

∂θi
|θ=θ∗

0
− ei

∂3h(xi,θ)

∂θl∂θj∂θk
|θ=θ∗

0

}
. (S2.1)

Therefore, Assumption 2 holds in this example if

sup
θ∗
0∈Θ∗

0

∣∣∣∣∂2h(xi,θ)

∂θj∂θk

∂h(xi,θ)

∂θl
|θ=θ∗

0

∣∣∣∣ = op(n
1/2) (S2.2)

and

sup
θ∗
0∈Θ∗

0

∣∣∣∣ei∂3h(xi,θ)

∂θl∂θj∂θk
|θ=θ∗

0

∣∣∣∣ = op(n
1/2) (S2.3)

for l, j, k ∈ {1, . . . , p + q}. Note that these two conditions imply that we

allow the left-hand side of Equations (S2.2) and (S2.3) to diverge with the

sample size at a rate slower than n1/2.

S3. Additional examples

In this section, we provide additional examples to illustrate the general

results from Section 3.1. Examples include the maximum likelihood esti-

mator (MLE), the generalized method of moments (GMM) estimator, and

the minimum distance (MD) estimator.
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S3.1 Maximum likelihood estimator

Suppose the data (z1, . . . , zn) are i.i.d. with the density function f(z|θ0)

and unknown parameters θ0. The likelihood function is Πn
i=1f(zi|θ0) and

the log-likelihood function is
∑n

i=1 logf(zi|θ0). The MLE estimator θ̂ max-

imizes the log-likelihood function

Q̂n(θ) =
1

n

n∑
i=1

logf(zi|θ). (S3.1)

Note that the objective function Q̂n(θ) converges to Q0(θ) = E(logf(zi|θ)).

Thus,

Hn(θ) =
1

n

n∑
i=1

∂2

∂θ∂θ′ logf(zi|θ), H(θ) = E
∂2

∂θ∂θ′ logf(zi|θ), (S3.2)

and

Σ = E

(
∂

∂θ
logf(zi|θ0)

∂

∂θ′ logf(zi|θ0)

)
≡ J, (S3.3)

where J is called the information matrix. When the information matrix

equality holds, we have H = H(θ0) = −J. This result together with

Theorem 1 shows that

√
n(θ̂s − θ∗

0)
d→ Π′

s(ΠsJΠ
′
s)

−1ΠsJ(Z+Π0δ0) ∼ N (JΠsJΠ0δ0,JΠs) ,

(S3.4)

where JΠs = Π′
s(ΠsJΠ

′
s)

−1Πs. By Corollary 1 and some algebra, we have

E(Λ2
s) = D′

θ(JΠsJ− Ip+q)Π0δ0δ
′
0Π

′
0(JΠsJ− Ip+q)

′Dθ +D′
θJΠsDθ.(S3.5)
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Thus, the FIC for the MLE estimator is defined as

FICs = D̂′
θ(ĴΠsĴ− Ip+q)Π0δ̂δ′Π′

0(ĴΠsĴ− Ip+q)
′D̂θ + D̂′

θĴΠsD̂θ, (S3.6)

where D̂θ and Ĵ are the sample analogs of Dθ and J, and δ̂δ′ = δ̂δ̂′ −

Π′
0Ĵ

−1Π0 is the asymptotically unbiased estimator of δ0δ
′
0.

Remark 1. Hjort and Claeskens (2003) and Claeskens and Hjort (2003)

investigate the limiting distribution of the MLE estimator in a local asymp-

totic framework and develop FIC under the likelihood framework. Our re-

sult (S3.4) corresponds to Lemma 3.2 of Hjort and Claeskens (2003), and

the FIC given in (S3.6) corresponds to the equation (3.3) in Claeskens and

Hjort (2003).

Remark 2. Using Theorem 1, we can easily obtain the asymptotic normal-

ity of the submodel estimator and construct the FIC for different likelihood

model setups. For example, if Q̂n(·) is the log-partial likelihood as in the

equation (3) of Hjort and Claeskens (2006), we can obtain their Lemma 1

and construct the FIC for the Cox hazard regression model. Or, if Q̂n(·) is

the quasi-likelihood function as in the equation (2.2) of Zhang and Liang

(2011), we can obtain their Theorem 1 and construct the FIC for generalized

additive partial linear models.
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S3.2 Generalized method of moments estimator

Let g(z,θ) be an ℓ × 1 vector of moment functions and θ a k × 1 vector

of unknown parameters with ℓ ≥ k. Suppose the data zi are i.i.d. and the

moment conditions satisfy E(g(z,θ0)) = 0. LetWn be an ℓ×ℓ positive semi-

definite weight matrix. The GMM estimator θ̂ maximizes the following

objective function

Q̂n(θ) = −

(
1

n

n∑
i=1

g(zi,θ)

)′

Wn

(
1

n

n∑
i=1

g(zi,θ)

)
. (S3.7)

Note that the GMM estimator includes the linear instrumental variable

estimator as a special case when g(zi,θ) = xi(yi − Y′
iθ), where yi is a

dependent variable, Yi are endogenous variables, and xi are instrumental

variables.

Suppose that Wn
p→ W and ĝn ≡ 1

n

∑n
i=1 g(zi,θ)

p→ E(g(zi,θ)) ≡

g0(θ). Then the objective function Q̂n(θ) converges toQ0(θ) = −g0(θ)
′Wg0(θ).

Let G = G(θ0) = E( ∂
∂θ′ g(zi,θ0)) and Ω = E(g(zi,θ0)g(zi,θ0)

′). By As-

sumption 1 and some algebra, we haveH = −G′WG andΣ = G′WΩWG.

By Theorem 1, it follows that

√
n(θ̂s − θ∗

0)
d→ HΠsG

′WG(Z+Π0δ0) ∼ N(HΠsG
′WGΠ0δ0,VΠs),

(S3.8)

where HΠs = −Π′
s(ΠsG

′WGΠ′
s)

−1Πs and VΠs = HΠsG
′WΩWGHΠs .
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Thus, by Corollary 1, the FIC for the GMM estimator is defined as

FICs = D̂′
θ(ĤΠsĜ

′WnĜ− Ip+q)Π0δ̂δ′Π′
0(ĤΠsĜ

′WnĜ− Ip+q)
′D̂θ

+ D̂′
θV̂ΠsD̂θ, (S3.9)

where D̂θ, Ĝ, and Ω̂ are the sample analogs of Dθ, G, and Ω, and δ̂δ′ is

the asymptotically unbiased estimator of δ0δ
′
0.

For the efficient GMM estimator, we set the weight matrix asW = Ω−1.

Then it follows that −H = Σ = G′Ω−1G ≡ V, and the covariance matrix

in (S3.8) is simplified as VΠs = Π′
s(ΠsVΠ′

s)
−1Πs. In this case, the FIC

for the efficient GMM estimator is defined as

FICs = D̂′
θ(V̂ΠsV̂ − Ip+q)Π0δ̂δ′Π′

0(V̂ΠsV̂ − Ip+q)
′D̂θ

+ D̂′
θV̂ΠsD̂θ, (S3.10)

where V̂ is the sample analog of V.

Remark 3. DiTraglia (2016) and Chang and DiTraglia (2018) propose a

focused moment selection criterion for the GMM estimator with a set of

locally misspecified moment conditions, i.e., E(g(z,θ0)) = n−1/2τ , where τ

is an unknown constant vector. Although we have focused on the case where

the moment conditions are correct, i.e., E(g(z,θ0)) = 0, our results can be

easily extended to the case considered in DiTraglia (2016) and Chang and

DiTraglia (2018).
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S3.3 Minimum distance estimator

Let h(θ) be a function that maps from a k×1 vector of structural parameters

θ to an ℓ× 1 vector of reduced form parameters α, where ℓ ≥ k. Suppose

that α̂
p→ α0 = h(θ0). Let Wn be an ℓ × ℓ positive semi-definite weight

matrix. The MD estimator θ̂ maximizes the following objective function

Q̂n(θ) = −(α̂− h(θ))′Wn(α̂− h(θ)). (S3.11)

Suppose that Wn
p→ W and

√
n(α̂−α0)

d→ N(0,Ω). Then the objec-

tive function Q̂n(θ) converges to Q0(θ) = −(α0−h(θ))′W(α0−h(θ)). Let

G = G(θ0) = E( ∂
∂θ′h(θ0)). By some algebra, we have H = −G′WG and

Σ = G′WΩWG, where H and Σ have the same sandwich form as those

of the GMM estimator. Thus, the FIC for the MD estimator has the same

form as (S3.9).

Similar to the GMM estimator, we set the weight matrix as W = Ω−1

for the efficient MD estimator. Then it follows that −H = Σ = G′Ω−1G ≡

V and VΠs = Π′
s(ΠsVΠ′

s)
−1Πs. Therefore, the FIC for the efficient MD

estimator has the same form as (S3.10).
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S4. Additional numerical results

Figure 1 presents the model weights of W-opt, PIA-1, and PIA-2 placed on

each submodel. For W-opt, the model weights are calculated based on (3.18)

for each d. For PIA-1 and PIA-2, we calculate E(w∞) based on Corollary

2 by simulation averaging across 10,000 random samples. The numerical

results show that W-opt assigns more weights to the narrow/full model for

smaller/larger |d|, which is consistent with the relative performance between

Narrow and Full displayed in Figure 1. Similar to W-opt, both PIA-1 and

PIA-2 put more weights on the narrow/full model when |d| is small/large.

However, compared to W-opt, both PIA-1 and PIA-2 tend to assign more

weights to the middle model for a fixed value of d, which is not optimal.

Therefore, PIA-1 and PIA-2 have larger AMSEs than W-opt as shown in

Figure 1.

Figures 2 and 3 present the relative MSEs of different estimates in

the heteroskedastic setup for n = 100 and 250, respectively. Similar to

the results in the homoskedastic setup, the relative performance of these

estimators depends strongly on c, p, and S. When the number of must-

have parameters p increases or the number of submodels S decreases, the

relative MSEs of these estimators are getting close to each other. Overall,

the ranking of different estimators in the heteroskedastic setup is quite
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Figure 1: Model weights placed on each submodels
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Figure 2: Relative MSE, heteroskedastic errors, n = 100.

similar to that in the homoskedastic setup, and PIA-2 still achieves a lower

MSE than other estimators in most cases.
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Figure 3: Relative MSE, heteroskedastic errors, n = 250.

S5. Post-averaging inference

Let w(s|δ̂) denote a data-dependent weight function for the sth submodel.

Consider an averaging estimator of the focus parameter µ0 as

µ̂ =
S∑

s=1

w(s|δ̂)µ̂s, (S5.1)

where the weight w(s|δ̂) takes the value in the interval [0, 1] and the sum

of weights equals 1. Suppose that w(s|δ̂) d→ w(s|∆), where ∆ = δ0 +

Π′
0Z. The following theorem presents a general distribution theorem for

the averaging estimator with data-dependent weights.

Theorem A1. Suppose that Assumptions 1–3 hold. Assume w(s|δ̂) d→
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w(s|∆) with at most a countable number of discontinuities. As n → ∞,

we have

√
n(µ̂− µ0)

d→ D′
θZ+D′

θ

(
S∑

s=1

w(s|∆)Bs

)
Π0∆,

where Z ∼ N(0,H−1ΣH−1) and Bs = HΠsH− Ip+q.

Unlike Theorem 2, Theorem A1 shows that the averaging estimator

with data-dependent weights has a nonstandard asymptotic distribution

since the estimated weights are asymptotically random. This nonstandard

asymptotic distribution can be expressed in terms of a nonlinear function

of the normal random vector Z.

We follow Hjort and Claeskens (2003), Claeskens and Carroll (2007),

and Zhang and Liang (2011) to construct a valid confidence interval as

follows. Let κ̂2 = D̂′
θĤ

−1Σ̂Ĥ−1D̂θ, which is a consistent estimator of

D′
θH

−1ΣH−1Dθ. Recall that δ̂
d→ ∆ ∼ N(δ0,Π

′
0H

−1ΣH−1Π0). From

Theorem A1, it is easy to see that[
√
n(µ̂− µ0)− D̂′

θ

(
S∑

s=1

w(s|δ̂)B̂s

)
Π0δ̂

]
/κ̂

d→ N(0, 1). (S5.2)

Let b(δ̂) = D̂′
θ

(∑S
s=1 w(s|δ̂)B̂s

)
Π0δ̂. Then, we can construct the confi-

dence interval for µ0 as

CIn =

[
µ̂− b(δ̂)√

n
− z1−α/2

κ̂√
n
, µ̂− b(δ̂)√

n
+ z1−α/2

κ̂√
n

]
, (S5.3)
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where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution.

From (S5.2), we have Pr(µ0 ∈ CIn) → 2Φ(z1−α/2)−1, where Φ(·) is a stan-

dard normal distribution function, which means the proposed confidence

interval (S5.3) has asymptotically the correct coverage probability.

Proof of Theorem A1: Since all of Λs can be expressed in terms

of the same normal vector Z in Corollary 1, there is joint convergence in

distribution of all
√
n(µ̂s − µ0) to Λs for s = 1, . . . , S, Also, w(s|δ̂) d→

w(s|∆), where w(s|∆) is a function of the random vector Z. Recall that

Bs = HΠsH− Ip+q. Therefore,

√
n(µ̂− µ0)

=
S∑

s=1

w(s|δ̂)
√
n(µ̂s − µ0)

d→
S∑

s=1

w(s|∆) (D′
θ(HΠsH− Ip+q)Π0δ0 +D′

θHΠsHZ)

= D′
θ

S∑
s=1

w(s|∆)(BsΠ0δ0 +BsΠ0Π
′
0Z) +D′

θ

S∑
s=1

w(s|∆)(HΠsHZ−BsΠ0Π
′
0Z)

= D′
θ

S∑
s=1

w(s|∆)BsΠ0(δ0 +Π′
0Z) +D′

θ

S∑
s=1

w(s|∆)(HΠsH(Ip+q −Π0Π
′
0) +Π0Π

′
0)Z

= D′
θ

(
S∑

s=1

w(s|∆)Bs

)
Π0∆+D′

θZ,

where the last equality holds by the facts that ∆ = δ0 +Π′
0Z and
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HΠsH(Ip+q −Π0Π
′
0) = HΠsH

 Ip 0p×q

0q×p 0q×q



= Π′
s(ΠsHΠ′

s)
−1ΠsHΠ′

s

 Ip 0p×q

0qs×p 0qs×q

 = Ip+q −Π0Π
′
0.

This completes the proof.
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