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1 Introduction

Model selection (MS) has a long history in time series analysis. For an autoregressive process

of infinite order (AR(∞)), estimation and inference are based on an approximation autore-

gressive model of order k. In the literature, several methods have been proposed to select

the order k to achieve the best prediction, for example, the final prediction error (Akaike,

1970), Mallows’ Cp (Mallows, 1973), Akaike information criterion (Akaike, 1974), and Shi-

bata information criterion (Shibata, 1980). However, for a small perturbation of data, the

MS method may choose a different model and result in diverse estimates and predictions. In

addition, the selected model might lose some useful information contained in other models,

and hence neglect the uncertainty across different models.

As an alternative to MS, model averaging (MA) is a smoothed extension of MS. In-

stead of choosing a single model, MA incorporates all available information by effectively

averaging over all candidate models. The two main MA approaches are Bayesian model

averaging and frequentist model averaging; see Claeskens et al. (2008), Moral-Benito (2015),

and Steel (2020) for literature reviews of both approaches. In the past two decades, there is

a rapidly growing development of frequentist MA methods. The central questions of concern

in frequentist MA methods are how to assign the weights for candidate models, what are

the theoretical properties of the selected weights, and does MA provide a significant im-

provement over MS? This paper studies the MA approaches and deals with these issues in a

general autoregressive model.

In this paper, we consider the MA prediction for integrated autoregressive processes of in-

finite order. Our model framework is general enough to include the standard ARIMA(p, d, q)

process as a special case, and can be applied to many stationary and nonstationary time

series analysis. The main goal of this paper is to construct a one-step-ahead prediction

based on a sequence of finite-order approximation AR(k) models for 1 ≤ k ≤ Kn, where the

maximum order Kn can go to infinity with the sample size n. Since the true data generating

process is a dth-order integrated AR(∞), all candidate models are misspecified. Instead of

the MS approach studied in Ing et al. (2010, 2012), we adopt an MA approach to construct

an averaging prediction and study its asymptotic and finite-sample properties.

We first derive a uniformly asymptotic expression for the mean squared prediction error

(MSPE) of the averaging prediction with fixed weights and demonstrate the bias-variance

trade-off for the MA approach. We show that the MSPE of the averaging prediction can

be decomposed into three components: the nonstationary estimation effect term, model

complexity term, and model misspecification term. This result is not a trivial extension of Ing

et al. (2010), because we need to take the interaction effect between any two candidate models

into account when we characterize the model complexity and model misspecification of the

MA approach. Based on the MSPE decomposition, we propose a Mallows-type criterion
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to select the data-driven weights for nonstationary autoregressions of infinite order. The

novel feature of the proposed method is that we introduce a penalty term to account for the

model complexity and model misspecification simultaneously using both the minimum and

maximum of the autoregressive orders between any two candidate models.

We provide two theoretical justifications for the proposed MA estimator: asymptotic

optimality and asymptotic improvability. For asymptotic optimality, we first show that the

proposed averaging prediction asymptotically assigns zero weight to the candidate model

with the autoregressive order k less than the integration order d. We then show that without

knowing the integration order, the proposed averaging prediction is asymptotically optimal

in the sense of achieving the lowest possible MSPE in the class of MA estimators. This

optimal result extends the asymptotic optimality of Ing et al. (2012) from MS to MA. In

addition to the proposed Mallows-type criterion, we also extend Akaike (1974)’s and Shibata

(1980)’s MS methods to the MA prediction and demonstrate the asymptotic optimality of

these two related MA methods.

In the existing frequentist MA studies, a great amount of numerical evidence has shown

that MA tends to perform better than MS in finite samples. However, little work has been

done on examining the potential MSPE reduction of MA compared to MS. Recently, Peng

and Yang (2022) and Xu and Zhang (2022) demonstrate that MA can provide significant

squared prediction risk reduction over MS in nested linear models with orthonormal basis

functions and linear nested regression models, respectively. In this paper, we relax the non-

stochastic regression design of these two papers and establish the asymptotic improvability

for a general autoregressive model. We first show that if there exists a candidate model whose

misspecification bias is different from that of other models, then we can find at least one

weight vector such that the MA has smaller MSPE than MS. We further show that when the

model misspecification bias is algebraic decay, the MA methods can achieve significant MSPE

reduction over the MS counterparts, but the magnitude of improvement is asymptotically

negligible in the exponential-decay case. We demonstrate that asymptotic improvability

holds for both fixed weights and data-driven weights.

In simulations, we examine the finite sample performance of the Mallows MA estimator

and its variants, Shibata and Akaike MA estimators, in both algebraic-decay and exponential-

decay cases. Monte Carlo simulations show that these MA methods perform quite well and

produce similar empirical MSPEs. Compared with MS methods, the MA methods generally

achieve lower empirical MSPEs in both cases. As the sample size increases, we can observe

significant MSPEs improvement from MS to MA in the algebraic-decay case, but not in the

exponential-decay case. Therefore, the simulation results are consistent with our theoretical

findings. As an empirical illustration, we apply the proposed MA methods to the climate

change prediction. Our empirical results show that the MA methods have lower empirical
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MSPEs than the MS methods, but the improvement diminishes as the rolling window size

increases. These findings are quite similar to those of the exponential-decay case in our

simulation study.

For the frequentist MA approaches, numerous methods of weight selection have been

proposed based on distinct criteria, for example, information criterion weighting (Buckland

et al., 1997; Hjort and Claeskens, 2003), adaptive regression by mixing models (Yang, 2000,

2001; Yuan and Yang, 2005), Mallows model averaging (Hansen, 2007; Wan et al., 2010; Liu

and Okui, 2013), jackknife model averaging (Hansen and Racine, 2012; Lu and Su, 2015;

Ando and Li, 2014, 2017), plug-in averaging (Liu, 2015; Charkhi et al., 2016; Cheng et al.,

2019), and others. In the time series context, the MS methods with asymptotic optimality

have been studied in Shibata (1980), Ing and Wei (2003, 2005), Ing (2007, 2020), Ing et al.

(2010, 2012), and Greenaway-McGrevy (2015, 2019). For the MA methods, asymptotic opti-

mality has been investigated for the linear regression model with lagged dependent variables

(Zhang et al., 2013), the regression model with time series errors (Cheng et al., 2015), the

factor-augmented regression model (Cheng and Hansen, 2015), the longitudinal data model

(Gao et al., 2016), the vector autoregressive (VAR) model (Liao et al., 2019; Liao and Tsay,

2020), the stationary AR(∞) process (Liao et al., 2021), the time-varying parameter regres-

sion models (Sun et al., 2021), and panel data VAR model (Greenaway-McGrevy, 2022).

Most of these studies, however, are limited to the stationary or local stationary time series,

which might not be applicable for data with non-stationary patterns in economics, finance,

or climate change. Furthermore, there is no asymptotic comparison available between MS

and MA in these studies.

The rest of this paper is organized as follows. Section 2 presents the model framework

and the MA prediction. Section 3 introduces the Mallows model averaging criterion. Section

4 presents the uniformly asymptotic expression for the MSPE, asymptotic optimality, and

asymptotic improvability. Section 5 discusses the related MA methods. Section 6 examines

the finite sample properties of the proposed method. Section 7 provides the empirical study,

and Section 8 concludes the paper. Proofs are included in the Appendix. Throughout this

paper, we employ the following symbols. We use C to denote some positive constant that is

independent of the sample size n, and C may represent different values in different equations.

Let
p−→ and

a.s.−→ represent convergence in probability and almost surely, respectively. Let

∥v∥2 be the Euclidean norm for vector v and ∥A∥2 = λmax(A
′A) be the maximum eigenvalue

of matrix A′A.
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2 Model Framework

In this paper, we follow the model setup of Ing et al. (2010, 2012) and assume that the

observations {y1, ..., yn} are generated from a dth-order integrated AR(∞) process as below:

(
1 +

∞∑
j=1

ajL
j
)
(1− L)dyt = ϵt, (2.1)

where L is the backshift operator, 0 ≤ d < ∞ is an unknown integer, and {ϵt, t =

0,±1,±2, ...} are independent random variables with mean zero and variance σ2. Note

that ϵt does not necessarily come from the same distribution. This dth-order integrated

AR(∞) process (2.1) includes the standard ARIMA(p, d, q) process as a special case and is

general enough to be applied to many stationary and nonstationary time series analysis.

We further assume that A(z) = 1+
∑∞

j=1 ajz
j is the stationary component of the process

satisfying

A(z) ̸= 0 for all |z| ≤ 1 and
∞∑
j=1

|jaj| < ∞. (2.2)

By Theorem 3.8.4 of Brillinger (2001), the stationary component (2.2) yields

A−1(z) = B(z) = 1 +
∞∑
j=1

bjz
j ̸= 0 for all |z| ≤ 1 and

∞∑
j=1

|jbj| < ∞. (2.3)

Here, we follow Ing et al. (2010, 2012) and impose the initial condition yt = 0 for t ≤ 0.

Our goal is to construct a one-step-ahead prediction of yn+1 given the observed data

{y1, ..., yn}. We consider a sequence of finite-order approximation models AR(1),..., AR(Kn),

where the maximum orderKn can go to infinity with the sample size n. Because the true data

generating process is AR(∞), each AR(k) model is misspecified and just an approximation

model. For each AR(k) model, 1 ≤ k ≤ Kn, the least squares estimator is defined as:

−â(k) =

[
n−1∑
j=Kn

yj(k)y
′

j(k)

]−1 n−1∑
j=Kn

yj(k)yj+1, (2.4)

where −â(k) and yj(k) = (yj, ..., yj−k+1)
′ are both k× 1 vectors, and

∑n−1
j=Kn

yj(k)y
′
j(k) is a

k × k matrix. Note that the asymptotic properties of least squares estimators of integrated

autoregressive processes with a finite integration order have been well studied; see Kawashima

(1980), Tiao and Tsay (1983), and Chan and Wei (1988). We assume that for all 1 ≤ k ≤ Kn,

the inverse of
∑n−1

j=Kn
yj(k)y

′
j(k) exists. Thus, for each AR(k) model, the one-step-ahead

prediction of yn+1 is

ŷn+1(k) = −y
′

n(k)â(k). (2.5)
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We now consider the one-step-ahead averaging prediction. Let wk be the weight cor-

responding to the AR(k) model and w = (w1, ..., wKn)
′ be a weight vector with wk ≥ 0

and
∑Kn

k=1wk = 1. That is, the weight vector w belongs to the set Hn := {w ∈ [0, 1]Kn :∑Kn

k=1wk = 1}. Combining all possible predicted values of ŷn+1(k), we construct an averaging

prediction as

ŷn+1(w) =
Kn∑
k=1

wkŷn+1(k). (2.6)

3 Mallows Model Averaging Criterion

In this section, we propose a Mallows-type criterion to select the model weights for the

averaging prediction for possibly nonstationary autoregressions. Define

Πmin(Kn) =


1 1 . . . 1

1 2 . . . 2
...

...
. . .

...

1 2 . . . Kn

 and Πmax(Kn) =


1 2 . . . Kn

2 2 . . . Kn

...
...

. . .
...

Kn Kn . . . Kn

 , (3.1)

where the (i, j)th element of Πmin(Kn) and Πmax(Kn) are min(i, j) and max(i, j) for 1 ≤
i, j ≤ Kn, respectively.

The proposed averaging criterion is defined as:

Cn(w) = Nσ̂2
w + (w′[Πmin(Kn) + Πmax(Kn)]w−N)σ̌2, (3.2)

where N = n − Kn, σ̂
2
w = N−1

∑n−1
t=Kn

(yt+1 − ŷt+1(w))2, and σ̌2 is some consistent estima-

tor of σ2 that does not depend on w. For example, σ̌2 can be constructed by σ̂2(Kn) =

N−1
∑n−1

t=Kn
(yt+1 − ŷt+1(Kn))

2. The data-driven weights based on the proposed averaging

criterion are defined as

ŵMMA = arg min
w∈Hn

Cn(w), (3.3)

and the proposed one-step-ahead averaging prediction for yn+1 is

ŷn+1(ŵMMA) =
Kn∑
k=1

ŵMMA,kŷn+1(k). (3.4)

Observe that the proposed Mallows-type criterion Cn(w) is a quadratic function of the

weight vector. Therefore, the data-driven weights can be computed numerically via quadratic

programming, and numerical algorithms of quadratic programming are available for most

programming languages.
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Note that w′Πmin(Kn)w and w′Πmax(Kn)w are derived from the MSPE of the averaging

prediction, and these two terms characterize the model complexity and model misspecifica-

tion, respectively; see the discussion after Theorem 1. Furthermore, since
∑Kn

k=1wk = 1, we

have

w′[Πmin(Kn) + Πmax(Kn)]w =
∑

1≤i,j≤Kn

wiwj(i+ j) = 2
Kn∑
k=1

wkk.

Therefore, minimizing the proposed criterion (3.2) is equivalent to minimizing

C̃n(w) = Nσ̂2
w + 2σ̌2

Kn∑
k=1

wkk,

which corresponds to the MMA criterion proposed by Hansen (2007).

4 Assumptions and Main Results

In this section, we present the asymptotic properties of the proposed averaging prediction.

We first present the technical assumptions and provide the asymptotic expression for the

MSPE of the averaging prediction. We then demonstrate the asymptotic optimality and

asymptotic improvability of the proposed averaging prediction.

4.1 Assumptions

We state the assumptions required for main results.

Assumption 1. d is a fixed nonnegative integer and bounded by some d̄ < ∞.

Assumption 2. Let Ft,m,vm(·) be the distribution function of the linear combination of inno-

vations: v′mϵt,m, where ϵt,m = (ϵt, ..., ϵt−m+1)
′ and vm = (v1, ..., vm)

′ ∈ Rm with
∑m

j=1 v
2
j = 1.

For all m ≥ 1, m ≤ t < ∞, there exist some real positive numbers α, δ, and C such that

Ft,m,vm(·) satisfies the local Hölder condition of order α: |Ft,m,vm(x)−Ft,m,vm(y)| ≤ C|x−y|α,
as |x− y| ≤ δ.

Assumption 3. sup0<t<∞ E|ϵt|q < ∞, q = 1, 2, ....

Assumption 4. K
max{4d−1,3}
n = o(n).

Assumption 1 implies that yt is generated from an integrated autoregressive process with

a finite integration order d for 0 ≤ d < d̄. Assumption 2 is the nonsingularity condition of

Ing et al. (2010, 2012). It is used to establish the negative moment bounds of the minimum
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eigenvalue of the Fisher information matrix. This condition holds for most continuous-

type distributions, for example, the normal distribution; see Ing and Sin (2006) for more

discussion.

Assumption 3 is the moment condition of ϵt and is identical to Condition (19) of Ing

et al. (2010). Assumption 4 puts a bound on the number of models relative to the sample

size. It also reflects the fact that the correlation among the time series yt is higher when the

integration order d is larger, and hence it may result in a smaller minimum eigenvalue of the

information matrix defined in (2.4). Thus, the integration order d also limits the maximal

order Kn used in MA.

Note that there is a trade-off between the moment condition on ϵt in Assumption 3 and

divergence rate ofKn in Assumption 4. If we have a weaker moment condition in Assumption

3, then we will have a more restrictive condition on Kn in Assumption 4. For d ≥ 1, our

Assumption 4 is the same as the maximal order condition of Ing et al. (2010, 2012). For

d = 0, we have K3
n = o(n) in Assumption 4, while the maximal order condition in the MS

case is K2+δ
n = o(n) for some δ > 0. Thus, our condition is slightly more restrictive than that

of the MS case. This is a small price paid for the MA approach, because the MA approach

selects the model weights from an uncountable set, while the MS approach compares the

candidate models in a countable set.

4.2 MSPE

We first introduce some notation that we will use to characterize the asymptotic expression

for the MSPE of the averaging prediction. Let zt = (1 − L)dyt be the dth differenced

term. Then, zt =
∑t−1

j=1 bjϵt−j. Define zt,∞ =
∑∞

i=0 biϵt−i, zt(v) = (zt, ..., zt−v+1)
′, zt,∞(v) =

(zt,∞, ..., zt−v+1,∞)′, and a(v) = (a1(v), ..., av(v))
′ = argminc∈RvE(zt,∞ + z

′
t−1,∞(v)c)2. In the

rest of the paper, we sometime use a(v) to denote an infinite dimensional vector with the

ith element equal to ai(v), i = 1, 2, ..., where ai(v) = 0 if i > v ≥ 0 or v ≤ 0. Define ∥d∥2z =∑
1≤i,j≤∞ didjχi−j, where χi−j = E(zi,∞zj,∞), and d = (d1, d2, ...)

′ is an infinite dimensional

vector which belongs to l2(Z+), that is,
∑

i∈Z+ d2i < ∞. Since zt,∞ +
∑∞

i=1 aizt−i,∞ = ϵt, we

have, for all v ≥ 0,

∥a− a(v)∥2z = E
[ ∞∑

i=1

(ai − ai(v))zt−i,∞
]2

= E
[
zt,∞ +

v∑
i=1

ai(v)zt−i,∞
]2 − σ2.

We next assume that the integration order d is known and present the asymptotic ex-

pression for the MSPE of the averaging prediction. The asymptotic optimality of the pro-

posed averaging prediction with data-driven weights will be established for the unknown

d in the next section. Define the MSPE of the averaging prediction as MSPE(w) =
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E(yn+1 − ŷn+1(w))2 − σ2. For a given value of the integration order d, we consider a se-

quence of finite-order approximation models starting from AR(max(1, d)) to AR(Kn). For

d ≥ 1, the most parsimonious candidate model is AR(d), which implies that we assign zero

weight to the candidate model AR(k) for 1 ≤ k < d. Therefore, we consider the weight

vector with wk ≥ 0,
∑Kn

k=1wk = 1, and wk = 0 for 1 ≤ k < d. That is, the weight vector w

belongs to the set Hd
n := {w ∈ [0, 1]Kn :

∑Kn

k=1wk = 1, wk = 0 for 1 ≤ k < d}, and Hd
n is a

subset of Hn.

Theorem 1. Suppose that Assumptions 1-4 hold, then we have

lim
n→∞

sup
w∈Hd

n

∣∣∣∣E(yn+1 − ŷn+1(w))2 − σ2

Ld
n(w)

− 1

∣∣∣∣ = 0, (4.1)

where

Ld
n(w) = σ2d

2 + d

N
+ σ2w

′Πmin(Kn)w− d

N
+ ∥a− a(w, d)∥2z, (4.2)

with

σ2w
′Πmin(Kn)w− d

N
= σ2

∑
1≤i,j≤Kn

wiwj min(i, j)− d

N
, (4.3)

and

∥a− a(w, d)∥2z = E

[
Kn∑
v=1

wv

(
∞∑
i=1

(ai − ai(v − d))zt−i,∞

)]2
=

∑
1≤i,j≤Kn

wiwj∥a− a(max(i, j)− d)∥2z. (4.4)

Theorem 1 presents a uniformly asymptotic expression for the MSPE of the averaging

prediction, and it shows that we can asymptotically decompose MSPE(w) into three terms.

The first term is N−1σ2(d2 + d), which measures the estimation effect of the nonstationary

component. The second term is N−1σ2(w′Πmin(Kn)w− d), which measures the model com-

plexity. As shown in (4.3), this term is penalized based on the smaller order between any

two models. The third term is ∥a − a(w, d)∥2z, which measures the model misspecification.

Unlike the model complexity term, the model misspecification term shown in (4.4) is approx-

imated by the bigger order between any two models. Therefore, Theorem 1 demonstrates

the bias-variance trade-off for the MA approach.

Note that Theorem 1 extends the uniformly asymptotic expression for the MSPE of the

least squares predictor from MS to MA. Suppose that we set the weight vector w equal to

the unit weight vector w1,k, where the kth element is one and others are zeros. Then, the

averaging estimator simplifies to a selection estimator, and ŷn+1(w1,k) is equivalent to the
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one-step-ahead prediction of yn+1 based on the AR(k) model, that is, ŷn+1(w1,k) ≡ ŷn+1(k).

For any w1,k, we can rewrite (4.3) and (4.4) as N−1σ2(k−d) and ∥a−a(k−d)∥2z, respectively.
Hence, Ld

n(w) in Theorem 1 can be simplified as follows:

Ld
n(w1,k) = σ2d

2

N
+ σ2 k

N
+ ∥a− a(k − d)∥2z, (4.5)

which corresponds to the uniformly asymptotic expression for the MSPE of ŷn+1(k) in Theo-

rem 2 of Ing et al. (2010). Furthermore, when d = 0, the autoregressive process is stationary,

and (4.5) corresponds to Theorem 3 of Ing and Wei (2003).

We next compare the uniformly asymptotic expression between (4.2) and (4.5) to charac-

terize the potential MSPE improvement from MS to MA. Suppose that we have only two can-

didate models, AR(i) and AR(j), with i < j. Then the AR(j) model has a larger model com-

plexity term, but a smaller model misspecification term, since ∥a−a(j−d)∥2z ≤ ∥a−a(v−d)∥2z
for any v ≤ j. Note that the model complexity term and model misspecification term of

the MS approach come from the same model, while these two terms of the MA approach

are calculated based on min(i, j) in (4.3) and ∥a− a(max(i, j)− d)∥2z in (4.4), respectively.

Therefore, we can construct a convex combination between the model AR(i) and AR(j) such

that the MSPE of the MA approach is smaller than that of the MS approach.

Based on the results of Theorem 1, we can further provide the conditions under which

there exists at least one weight vector such that the MA approach achieves strictly lower

MSPE than the MS approach. Observe that

Hd
n = {w ∈ [0, 1]Kn :

Kn∑
k=1

wk = 1, wk = 0 for 1 ≤ k < d}

= {w ∈ [0, 1]Kn−max(1,d)+1 :
Kn∑

k=max(1,d)

wk = 1}.

For the MS case, the candidate models AR(max(1, d)),..., AR(Kn) correspond one-to-one to

vertices of Hd
n. Define V(Hd

n) as the set of all the vertices in Hd
n and let Hd

n\V(Hd
n) be the

weight set Hd
n excluding the vertices V(Hd

n).

Corollary 1. Suppose that Assumptions 1-4 hold. If there is a k ∈ {max(1, d), ..., Kn} such

that

∥a− a(k − d)∥2z ̸= ∥a− a(l − d)∥2z, ∀ l ∈ {max(1, d), ..., Kn}, l ̸= k, (4.6)

then there exists at least one weight vector w⋄
n in Hd

n\V(Hd
n) such that

inf
w∈Hd

n\V(Hd
n)
Ld
n(w) ≤ Ld

n(w
⋄) < min

w∈V(Hd
n)
Ld
n(w).
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Corollary 1 shows that when the model misspecification bias of one particular model is

different from that of any other candidate models, there exists at least one weight vector

such that the MSPE of the associated MA estimator is strictly less than that of any MS

estimator. In this case, the optimal weight vector that minimizes Ld
n(w) will assign non-zero

weights on at least two models, which implies that MA can further reduce the MSPE of MS.

We now present the uniformly asymptotic expression for the MSPE of the averaging

prediction with the optimal weights. Let w∗
n = argminw∈Hd

n
Ld
n(w) denote the weights that

minimize Ld
n(w) over the set Hd

n. Then, L
d
n(w

∗
n) is the minimum MSPE of the MA estimator.

Corollary 2. Let Aj = ∥a− a(j − d)∥2z. Suppose that Assumptions 1-4 hold, then we have

Ld
n(w

∗
n) =

σ2d2

N
+

σ2max(1, d)

N
+

AKn +
Kn∑

j=max(1,d)+1

σ2

N
(Aj−1 − Aj)

σ2

N
+ Aj−1 − Aj

 .

Like Theorem 1, we can also decompose Ld
n(w

∗
n) into three components. Ideally, one

would aim to estimate the weights w∗
n by minimizing Ld

n(w) directly. Unfortunately, this is

infeasible because the minimization of Ld
n(w) depends on the unknown model misspecifica-

tion bias. Instead of minimizing the unknown Ld
n(w), we select the data-driven weights by

minimizing the proposed Mallows-type criterion and demonstrate that the empirical weights

asymptotically minimize the MSPE.

4.3 Asymptotic optimality

In practice, the integration order d is unknown. Therefore, we construct the averaging

prediction by combining all finite-order AR models starting from AR(1) to AR(Kn) for

any 0 ≤ d < d̄. In this section, we first show that the proposed averaging prediction

asymptotically assigns zero weight to the model with the autoregressive order less than d.

We then show that the proposed averaging prediction is asymptotically optimal when the

integration order d is unknown.

For any data-driven MA criterion, MAn(w), let ŵMA := argminw∈Hn MAn(w) and ŵd
MA :=

argminw∈Hd
n
MAn(w) be the weights obtained by minimizing the criterion MAn(w) over the

weight set Hn and Hd
n, respectively. A data-driven MA criterion is said to be asymptotically

optimal for a dth-order integrated AR(∞) process with an unknown d if the data-driven

weights satisfy

∥ŵMA − ŵd
MA∥2

a.s.−→ 0, (4.7)

and

lim
n→∞

Ld
n(ŵ

d
MA)

Ld
n(w

∗
n)

p−→ 1. (4.8)
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Condition (4.7) states that when d is unknown, the weights obtained by minimizing the

criterion MAn(w) over the unrestrictive set Hn will converge almost surely to the weights

obtained by minimizing the same criterion MAn(w) over the restrictive set Hd
n. This con-

dition implies that the weight on the candidate model with the autoregressive order less

than d will converge almost surely to zero. Recall that Ld
n(w) is the uniformly asymptotic

expression for the MSPE of the averaging prediction derived in Theorem 1. Thus, Condition

(4.8) states that the data-driven weights achieve the lowest possible MSPE on the set Hd
n

asymptotically.

Let ξdn := Ld
n(w

∗
n) = infw∈Hd

n
Ld
n(w) denote the minimum MSPE in the class of averaging

estimators with weights belonging to the set Hd
n derived in Corollary 2. We next state the

additional assumption for the asymptotic optimality.

Assumption 5. K
1/2
n (Nξdn)

−1 −→ 0.

Assumption 5 puts a bound on the maximum order Kn relative to the sample size N , and

it specifies that K
1/2
n grows at a rate slower than Nξdn. As pointed out in Cheng et al. (2015)

and Liao et al. (2021), many MA approaches require a stronger assumption on Kn and it

may result in inferior prediction due to the preclusion of the optimal model. Unlike the

conditions used in the existing studies, for example, Condition (11) of Ando and Li (2014),

Assumption 2(a) of Liao and Tsay (2020), Assumption 2 of Zhang (2021), and Condition

(4.3) of Liao et al. (2021), Assumption 5 is weaker and quite mild, and hence does not

preclude the optimal model.

Let ŵMMA := argminw∈Hn Cn(w) and ŵd
MMA := argminw∈Hd

n
Cn(w) be the MMA weights

obtained by minimizing the criterion Cn(w) over the weight set Hn and Hd
n, respectively.

The following theorem shows the asymptotic optimality of the proposed averaging criterion

when d is unknown.

Theorem 2. Suppose that Assumptions 1-5 hold, then we have

∥ŵMMA − ŵd
MMA∥2

a.s.−→ 0 and lim
n→∞

Ld
n(ŵ

d
MMA)

Ld
n(w

∗
n)

p−→ 1.

Theorem 2 shows that the proposed MA prediction achieves the lowest possible MSPE.

This optimal result extends the asymptotic optimality of Ing et al. (2012) from MS to MA.

In addition, for the MA methods, the result extends the asymptotic optimality in Theorem

1 of Liao et al. (2021) from the stationary autoregressive process to a dth-order integrated

AR(∞) process with an unknown d.

4.4 Asymptotic improvability

In this section, we provide an asymptotic comparison for the MSPE between MA and MS.

Recall that ŷn+1(w1,k) = ŷn+1(k), where w1,k is the unit weight vector that assigns the whole

11



weight on the kth element. Let w∗
1,k := argminw∈V(Hd

n)
Ld
n(w) denote the optimal unit weight

vector that minimizes Ld
n(w) over the set of all the vertices in Hd

n. Thus, Ld
n(w

∗
1,k) is the

minimum MSPE of the MS estimator. Like w∗
n, the optimal unit weight vector w∗

1,k also

depends on the sample size n. Here we suppress the sample size n from w∗
1,k for notational

simplicity.

We follow Peng and Yang (2022) and examine the potential MSPE reduction of MA

compared to MS as follows:

∆n = Ld
n(w

∗
1,k)− Ld

n(w
∗
n). (4.8)

We then investigate the magnitude of ∆n relative to Ld
n(w

∗
1,k) in the following two cases:

(i) Algebraic-decay case: ∥a− a(v)∥2z = Cv−α,

(ii) Exponential-decay case: ∥a− a(v)∥2z = C exp(−α(v)),

where α is a positive constant. Both the algebraic-decay and exponential-decay are frequently

used in time series analysis. The above two scenarios are simplified but have the same optimal

orders of the MS estimator as the examples 1 and 2 in Ing and Wei (2005). Following Peng

and Yang (2022), we use the symbols ⪰ and ≍, where an ⪰ bn means bn = O(an), and

an ≍ bn means both an ⪰ bn and bn ⪰ an.

Theorem 3. Suppose that Assumptions 1-4 hold, then we have

(i) ∆n ≍ Ld
n(w

∗
1,k) for the algebraic-decay case,

(ii) ∆n = o(Ld
n(w

∗
1,k)) for the exponential-decay case.

From Corollary 1, we show that if there exists a candidate model whose misspecification

bias is different from that of other models, then ∆n is greater than zero. Theorem 3 further

provides a measurement on the potential MSPE improvement from MS to MA. Under a dth-

order integrated AR(∞) model, if the model misspecification bias is algebraic decay as the

model dimension increases, the magnitude of potential MSPE reduction has the same order as

that of the minimum MSPE of MS. However, for the exponential-decay case, the magnitude

is asymptotically negligible. These results are consistent with the existing findings such as

Peng and Yang (2022) and Xu and Zhang (2022), in which they consider a non-stochastic

regression design. In contrast to their framework, our results are established for a general

autoregressive model with broader applicability.

We next compare the MSPE of data-driven MA and MS approaches. Similar to the

definition of ŵd
MA in the previous section, we use ŵd

MS := argminw∈V(Hd
n)
MAn(w) to denote

the unit weight vector that minimizes the criterion MAn(w) over the set of all the vertices

in Hd
n. Therefore, for any data-driven MS approach, Ld

n(ŵ
d
MS) is the MSPE of the associated

MS estimator.

12



Corollary 3. Let ∆̂n := Ld
n(ŵ

d
MS)− Ld

n(ŵ
d
MA). Suppose that Assumptions 1-5 hold. If

Ld
n(ŵ

d
MS)

Ld
n(w

∗
1,k)

p−→ 1 and
Ld
n(ŵ

d
MA)

Ld
n(w

∗
n)

p−→ 1, (4.9)

then we have

(i) ∆̂n ≍ Ld
n(ŵ

d
MS) for the algebraic-decay case,

(ii) ∆̂n = o(Ld
n(ŵ

d
MS)) for the exponential-decay case.

Furthermore, we have Ld
n(ŵ

d
MA) ≍ Ld

n(ŵ
d
MS) in both cases.

Corollary 3 shows that if both data-driven MA and MS approaches are asymptotic op-

timal, then the asymptotic improvability in Theorem 3 will hold for the chosen weight ŵd
MA

and selected model ŵd
MS. Note that under Assumptions 1-5, Theorem 3.1 of Ing et al. (2012)

demonstrates the asymptotic optimality of AIC and its equivalent MS criteria. In the next

section, we will discuss the asymptotic optimality for the MA counterparts of these MS

criteria.

5 Other Model Averaging Criteria

In this section, we discuss the relationship between the proposed MMA criterion and other

data-driven MA criteria, and investigate their asymptotic properties. Inspired by Shibata

(1980), we propose a Shibata model averaging (SMA) criterion as follows:

Sn(w) = (N +w′[Πmin(Kn) + Πmax(Kn)]w)σ̂2
w,

where Πmin(Kn), Πmax(Kn), and σ̂2
w are defined in (3.1) and (3.2). Note that SMA extends

Shibata (1980)’s criterion from MS to MA, and it is closely related to AIC-type and Mallows-

type MA criteria. Following the same idea, we define an Akaike model averaging (AMA)

criterion as follows:

An(w) = log(σ̂2
w) +

w′[Πmin(Kn) + Πmax(Kn)]w

N
.

Like the discussion in Section 4.2, if we consider the unit weight vectorw1,k, then Sn(w1,k)

and An(w1,k) will correspond to the Shibata MS criterion, Sn(k) := (N + 2k)σ̂2(k), and

Akaike information criterion, An(k) := log(σ̂2(k)) + N−1(2k), respectively, where σ̂2(k) =

N−1
∑n−1

t=Kn
(yt+1 − ŷt+1(k))

2. However, unlike the MMA criterion, both SMA and AMA

criteria are not a quadratic function of the weight vector and cannot be solved by quadratic

programming.

Let ŵSMA := argminw∈Hn Sn(w) and ŵd
SMA := argminw∈Hd

n
Sn(w) be the SMA weights

obtained by minimizing the criterion Sn(w) over the weight set Hn and Hd
n, respectively.
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Similarly, let ŵAMA := argminw∈Hn An(w) and ŵd
AMA := argminw∈Hd

n
An(w). The following

theorem shows the asymptotic optimality of SMA and AMA criteria when d is unknown.

Theorem 4. Suppose that Assumptions 1-5 hold. For the Shibata model averaging criterion,

we have

∥ŵSMA − ŵd
SMA∥2

a.s.−→ 0 and lim
n→∞

Ld
n(ŵ

d
SMA)

Ld
n(w

∗
n)

p−→ 1.

For the Akaike model averaging criterion, we have

∥ŵAMA − ŵd
AMA∥2

a.s.−→ 0 and lim
n→∞

Ld
n(ŵ

d
AMA)

Ld
n(w

∗
n)

p−→ 1.

Theorem 4 shows that both SMA and AMA are asymptotically optimal in the sense of

achieving the lowest possible MSPE. Therefore, according to Theorem 2 and Theorem 4,

MMA, SMA, and AMA are asymptotically equivalent in terms of achieving the minimum

MSPE. Furthermore, the differences among these criteria (up to a monotone transformation)

are negligible relative to the minimum MSPE of MA as shown in Lemma 8 and the proof

of Theorem 4 in the Appendix. For MS methods, Shibata (1980), Ing and Wei (2005), and

Ing et al. (2012) established similar results for these MS criteria. Our results extend the

asymptotic equivalence between these criteria from MS to MA for a dth-order integrated

AR(∞) model.

6 Simulations

In this section, we investigate the finite-sample performance of proposed averaging criteria

in two simulation designs. The first design corresponds to the algebraic-decay case, and we

consider the following process:(
1 +

100∑
j=1

ajL
j
)
(1− L)dyt = ϵt + 0.5ϵt−1,

where ϵt ∼ i.i.d.N(0, 1). We set aj = c(−1)j−1j−α, where α = 0.5, 1, or 1.5, and the

parameter c is varied on a grid from 0.1 to 0.9.

The second design corresponds to the exponential-decay case, and we consider the fol-

lowing ARIMA(1,d,1) process:(
1 + ϕL

)
(1− L)dyt = ϵt + θϵt−1,

where ϵt ∼ i.i.d.N(0, 1). The coefficient ϕ is varied on a grid from -0.8 to 0.8, and the

coefficient θ is set to be 0.25, 0.5, or 0.75. In both simulation designs, the integration order

d is set to be 0, 1, or 2. The sample size is varied between n = 100, 200, 500, and 1000, and

the number of models is Kn = [3n1/3], where [a] is the nearest integer of a.

We consider the following MS and MA estimators:
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1. Akaike information criterion MS estimator (labeled AIC).

2. Bayesian information criterion MS estimator (labeled BIC).

3. Mallows’ Cp MS estimator (labeled Cp).

4. Shibata information criterion MS estimator (labeled SIC).

5. Smoothed Bayesian information criterion MA estimator (labeled SBIC)

6. Akaike model averaging estimator (labeled AMA)

7. Shibata model averaging estimator (labeled SMA)

8. Mallows model averaging estimator (labeled MMA)

The AIC and BIC criteria are An(k) = log(σ̂2(k)) +N−1(2k) and Bn(k) = log(σ̂2(k)) +

N−1(log(N)k), respectively, where σ̂2(k) = N−1
∑n−1

t=Kn
(yt+1 − ŷt+1(k))

2. The Cp and SIC

criteria are Cn(k) = Nσ̂2(k) + 2kσ̌2 and Sn(k) = (N + 2k)σ̂2(k), respectively. For the

AIC, BIC, Cp, and SIC, we select the model with the smallest criterion value. The SBIC

estimator is a simplified form of Bayesian model averaging with diffuse priors and is defined

as ŵk = exp(−0.5NBn(k))/
∑Kn

j=1 exp(−0.5NBn(j)). The MMA estimator is defined in (3.2)

and the AMA and SMA estimators are described in Section 5.

We evaluate the finite sample behavior of each method based on the following empirical

MSPE: 1
S

∑S
s=1

(
N
σ2

(
(y

{s}
n+1 − ŷ

{s}
n+1(ŵ

{s}))2 − σ2
))

, where ŷ
{s}
n+1(ŵ

{s}) is the prediction based

on each method in the sth replication. As pointed out in Hansen (2008), we subtract the error

variance σ2 because it is the common leading term of the MSPE across all candidate models.

Here, the scaling N/σ2 is used to ensure that results are scale-free. For σ2, we use the same

estimator σ̂2(Kn) = N−1
∑n−1

t=Kn
(y

{s}
t+1 − ŷ

{s}
t+1(Kn))

2 for all methods in each replication. The

empirical MSPE is calculated by averaging across 50000 simulation replications. For ease of

comparison, we divide the MSPE of each method by that of MMA and report the relative

MSPE. Lower relative MSPE means better performance on predictions. When the relative

MSPE exceeds one, it indicates that the specified method performs worse than MMA.

In Figure 1, we present the relative MSPEs of the various estimates for d = 1 in the

algebraic-decay case. In each figure, the relative MSPEs are displayed for α = {0.5, 1.0, 1.5}
and n = {100, 200, 500, 1000} in 12 panels, and in each panel, the relative MSPEs are

displayed for c between 0.1 and 0.9. The simulation results show that the MMA, AMA,

and SMA have similar MSPEs in most situations and perform quite well. These three MA

estimators have lower MSPEs than those of the AIC, Cp, and SIC, which is consistent with

Corollary 3. The BIC is dominated by the SBIC, AMA, MMA, and SMA. The SBIC performs

slightly better than the AMA, MMA, and SMA when α = 1.5 and n = 100, but performs

worse than the AMA, MMA, and SMA when α is small and n is large.

In Figure 2, we present the relative MSPEs of the various estimates for d = 1 in

the exponential-decay case. In each figure, the relative MSPEs are displayed for θ =
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Figure 1: Relative MSPEs for d = 1 in the algebraic-decay case
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Figure 2: Relative MSPEs for d = 1 in the exponential-decay case
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{0.25, 0.5, 0.75} and n = {100, 200, 500, 1000} in 12 panels, and in each panel, the rela-

tive MSPEs are displayed for ϕ between -0.8 and 0.8. The simulation results show that the

MMA, AMA, and SMA still achieve lower MSPEs than those of AIC, Cp, and SIC in the

exponential-decay case, but the efficiency gain of MA over MS diminishes as the sample

size increases. The relative performance of the BIC, SBIC, and other estimators depends

strongly on the sample size n and coefficients ϕ and θ. Both BIC and SBIC have larger

MSPEs than other estimators when ϕ, θ, and n are large.

To illustrate the effect of the sample size on the MSPE in both algebraic-decay and

exponential-decay cases, we present the relative MSPEs in Figures 3 and 4, in which the

sample size increases from 100 to 2500 on a logarithmic scale. As the sample size increases,

we can observe that the MSPEs of AIC, Cp, and SIC are getting close to those of AMA,

MMA, and SMA in the exponential-decay case, but not in the algebraic-decay case, which

is consistent with Corollary 3. Unlike these estimators, the relative MSPEs of BIC and

SBIC increase as the sample size increases, when c is large in the algebraic-decay case and

θ = 0.75 in the exponential-decay case. Therefore, it shows that the BIC and SBIC are not

asymptotically optimal in these cases. In the supplementary material, we also present the

relative MSPEs for d = 0 and d = 2 in the algebraic-decay and exponential-decay cases, and

the ranking of these estimators is quite similar to that for d = 1.

7 Empirical Example

In this section, we apply the proposed MA methods to the climate change prediction. We

employ Rohde and Hausfather (2020)’s global land-ocean temperature dataset to study

the Earth’s surface temperature change between January 1850 to December 2021. Ro-

hde and Hausfather (2020) constructed the Earth land and ocean temperature changes

relative to a 1951-1980 baseline period; see their paper for a detailed description of the

data construction. The monthly data consist of 2064 observations and are available at:

https://doi.org/10.5281/zenodo.3634713. The time series plot of the land-ocean tempera-

ture changes between 1850-2021 is presented in Figure 5.

We calculate the one-step-ahead prediction of the land-ocean temperature changes using

a rolling estimation scheme. We set the rolling window size to n = 100, 200, 500, or 1000,

and the number of models as Kn = [3n1/3], where [a] is the nearest integer of a. For each

rolling window size n, we use observations {yt}n+b−1
t=b in the training sample to estimate

a sequence of AR(k) models and then apply the same MS and MA methods as those in

the simulation study to construct the one-step-ahead prediction of yn+b for b = 1, ..., B,

where B = n0 − n and n0 = 2064. We next evaluate these methods based on the following

empirical MSPE: 1
B

∑B
b=1

(
N
σ2

(
(yn+b − ŷn+b(ŵb))

2 − σ2
))
, where ŷn+b(ŵb) is the prediction
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Figure 3: Relative MSPEs for the algebraic-decay case, d = 1, various sample sizes
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Figure 4: Relative MSPEs for the exponential-decay case, d = 1, various sample sizes
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Figure 5: Temperature Change in Celsius

based on each method in the bth training sample. For ease of comparison, we divide the

empirical MSPE of each method by that of MMA and report the relative MSPE. Thus, an

entry greater than one indicates that the specified method performs worse than MMA.

Table 1 presents the relative MSPEs of MS and MA methods. The results show that

AMA, MMA, and SMA achieve lower MSPEs than other methods in most scenarios. As the

rolling window size increases, we observe that the MSPEs of AIC, Cp, and SIC approach

those of AMA, MMA, and SMA, while the relative MSPEs of BIC and SBIC are increasing.

The pattern of relative performance among these estimators in this empirical example is

quite similar to that of the exponential-decay case in the simulation study.

Table 1: Relative MSPEs

n AIC BIC Cp SIC SBIC AMA MMA SMA

100 1.022 1.022 1.030 1.037 1.002 1.000 1.000 1.005

200 1.020 1.009 1.022 1.022 1.004 1.000 1.000 1.001

500 1.007 1.020 1.008 1.009 1.017 1.000 1.000 1.000

1000 1.003 1.044 1.003 1.003 1.040 1.000 1.000 1.000
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8 Conclusion

In this paper, we study the MA prediction for integrated autoregressive processes of infinite

order. We first derive a uniformly asymptotic expression for the MSPE of the averaging pre-

diction with fixed weights and demonstrate the bias-variance trade-off for the MA approach.

We then propose a Mallows-type criterion to select the data-driven weights and investigate

two related MA methods, Shibata and Akaike MA estimators. We show that the proposed

method and these two related methods are asymptotically optimal in the sense of achiev-

ing the lowest possible MSPE. We further demonstrate that the MA methods can provide

significant MSPE reduction over the MS methods when the model misspecification bias is

algebraic decay, but the magnitude of improvement is asymptotically negligible when the

model misspecification bias is exponential decay. The theoretical properties of asymptotic

optimality and asymptotic improvability are supported by the simulation study and real

data analysis.

Appendix

A MSPE Decomposition and Supplementary Lemmas

We first provide the decomposition for the MSPE of the averaging prediction. As shown in

Eq. (4) of Ing et al. (2010), the difference between yn+1 and ŷn+1(k) can be decomposed as:

yn+1 − ŷn+1(k) =

{
−N−1s

′

n,n(k)
[
N−1

n−1∑
j=Kn

sj,n(k)s
′

j,n(k)
]−1

n−1∑
j=Kn

sj,n(k)ϵj+1,k−d

}
+ ϵn+1,k−d,

(A.1)

where sj,n(k) = Gn(k)Q(k)yj(k), Gn(k) is a k × k diagonal matrix defined as

Gn(k) =


diag(1, ..., 1, N−d+1/2, ..., N−1/2), k > d ≥ 1,

diag(N−d+1/2, ..., N−d+k−1/2), d ≥ k ≥ 1,

diag(1, ..., 1), d = 0,

Q(k) is a k × k matrix such that

Qn(k)yj(k) =


(
z
′
j(k − d)1, yj(d), ..., yj(1)

)′
, k > d ≥ 1,

(yj(d), ..., yj(d− k + 1))′, d ≥ k ≥ 1,

zj(k), d = 0,
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with yj(v) = (1− L)d−vyj, and

ϵn+1,k−d =

{
zj+1, k = d,

zj+1 + a
′
(k − d)zj(k − d), k > d.

Based on the decomposition of (A.1), the MSPE of the averaging prediction can be

rewritten as

E(yn+1 − ŷn+1(w))2 − σ2 = E

(
yn+1 −

Kn∑
k=max(1,d)

wkŷn+1(k)

)2

− σ2

= E

( Kn∑
k=max(1,d)

wkfn(k) +
Kn∑

k=max(1,d)

wkSn(k − d)

)2

,

where

fn(k) =
s
′
n,n(k)√
N

[
N−1

n−1∑
j=Kn

sj,n(k)s
′

j,n(k)
]−1
(

1√
N

n−1∑
j=Kn

sj,n(k)ϵj+1,k−d

)
,

and

Sn(k − d) = ϵn+1,k−d − ϵn+1 =
n∑

i=1

(ai − ai(k − d))zn+1−i.

Note that fn(k) can be further decomposed into a non-stationary term B1n(k, d) and

stationary term B2n(k − d) as follows:

B1n(k, d) =

{
U

′
n,n(d)√
N

Ω̂−1
n (k)

1√
N

n−
√
n−1∑

j=Kn

Uj,n(d)ϵj+1,k−d

}
1(d ≥ 1),

B2n(k − d) =

{
z
′
n(k − d)√

N
Γ−1(k − d)

1√
N

n−
√
n−1∑

j=Kn

zj(k − d)ϵj+1,k−d

}
1(k > d),

where Ω̂n(k) =
[
N−1

∑n−1
j=Kn

sj,n(k)s
′
j,n(k)

]
for k ≥ 1, Γ(v) = E(zt,∞(v)z

′
t,∞(v)) for v ≥ 1,

and Uj,n(v) =
(
(yj(d)/N

d−(1/2), ..., yj(d− v + 1)/Nd−v+(1/2)]
)′
.

To take care of the dependence between future observations and the estimation sample,

we use the following terms to approximate B1n(k, d)

f1,n(d) =

{
U

′
n,n(d)√
N

[
N−1

n−
√
n−1∑

j=Kn

Uj,n(d)U
′

j,n(d)

]−1
1√
N

n−
√
n−1∑

j=Kn

Uj,n(d)ϵj+1

}
1(d ≥ 1),

f ∗
1,n(d) =

{
U∗′
n,n(d)√
N

[
N−1

n−
√
n−1∑

j=Kn

Uj,n(d)U
′

j,n(d)

]−1
1√
N

n−
√
n−1∑

j=Kn

Uj,n(d)ϵj+1

}
1(d ≥ 1),

where U∗
n,n(d) =

(
(N−d+1/2

∑n−1
j=

√
n κj(d)ϵn−j, ..., N

−1/2
∑n−1

j=
√
n κj(1)ϵn−j

)′
, κj(1) =

∑j
s=0 bs,

and κj(v) =
∑j

s=0 κs(v − 1), ∀v ≥ 2.
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Similarly, we use the following terms to approximate B2n(k − d)

f2,n(k − d) =

{
z
′
n(k − d)√

N
Γ−1(k − d)

1√
N

n−
√
n−1∑

j=Kn

zj(k − d)ϵj+1

}
1(k > d),

f ∗
2,n(k − d) =

{
z∗

′
n (k − d)√

N
Γ−1(k − d)

1√
N

n−
√
n−1∑

j=Kn

zj(k − d)ϵj+1

}
1(k > d),

f ∗
2,n,∞(k − d) =

{
z∗

′
n (k − d)√

N
Γ−1(k − d)

1√
N

n−
√
n−1∑

j=Kn

zj,∞(k − d)ϵj+1

}
1(k > d),

where z∗n(k) =

(∑√
n−Kn

j=0 bjϵn−j, ...,
∑√

n−Kn

j=0 bjϵn−k+1−j

)′

for k ≥ 1. To approximate the

model misspecification term Sn(k − d), we use the following term

S∗
n(k − d) =

√
n/2∑
i=1

(ai − ai(k − d))z∗∗n+1−i,

where z∗∗n+1−i =
∑√

n/2
j=0 bjϵn+1−i−j.

The following lemmas will be used in the proof of theorems and corollaries, and the proofs

of these lemmas are included in the supplementary material.

Lemma 1. For Kn = o(n) and 0 ≤ k ≤ Kn,

E
( Kn∑

k=0

wk(ϵn+1,k − ϵn+1)
)2 − ∑

0≤i,j≤Kn

wiwj∥a− a(max{i, j})∥2z = o(n−1).

Lemma 2. For K
max{4d−1,3}
n = o(n), max{1, d} ≤ k ≤ Kn, and w ∈ Hd

n,

(i) lim
n→∞

sup
w∈Hd

n

∣∣∣∣E
[∑Kn

k=max{1,d}wk(f2,n(k − d)− f ∗
2,n(k − d))

]2
Ld
n(w)

∣∣∣∣ = 0,

(ii) lim
n→∞

sup
w∈Hd

n

∣∣∣∣E
[∑Kn

k=max{1,d}wk(f
∗
2,n(k − d)− f ∗

2,n,∞(k − d))
]2

Ld
n(w)

∣∣∣∣ = 0.

Lemma 3. For K2
n = o(n),

(i) lim
n→∞

max
1≤k≤Kn

∣∣E(N(f ∗
2,n,∞(k))2)− kσ2

∣∣ = 0,

(ii) lim
n→∞

max
1≤k,l≤Kn

∣∣E(Nf ∗
2,n,∞(k)f ∗

2,n,∞(l))−min(k, l)σ2
∣∣ = 0. (A.2)
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Lemma 4. For K
max{4d−1,3}
n = o(n), max{1, d} ≤ k ≤ Kn, and w ∈ Hd

n,

lim
n→∞

sup
w∈Hd

n

∣∣∣∣E
[
(
∑Kn

k=max{1,d}wkf2,n(k − d))(
∑Kn

k=max{1,d}wkSn(k − d))
]

Ld
n(w)

∣∣∣∣ = 0. (A.3)

Lemma 5. For K
max{4d−1,3}
n = o(n), max{1, d} ≤ k ≤ Kn, and w ∈ Hd

n,

lim
n→∞

sup
w∈Hd

n

∣∣∣∣E
[∑Kn

k=max{1,d} (wkf1,n(d) + wkf2,n(k − d) + wkSn(k − d))
]2

Ld
n(w)

− 1

∣∣∣∣ = 0. (A.4)

Lemma 6. For K
max{4d−1,3}
n = o(n), max{1, d} ≤ k ≤ Kn, and w ∈ Hd

n,

lim
n→∞

sup
w∈Hd

n

∣∣∣∣E(fn(k, d), Sn(k − d),w)− E(Fn(k, d), Sn(k − d),w)

Ld
n(w)

∣∣∣∣ = 0, (A.5)

where

E(fn(k, d), Sn(k − d),w) = E
[ Kn∑
k=max{1,d}

wkfn(k) +
Kn∑

k=max{1,d}

wkSn(k − d)
]2
,

E(Fn(k, d), Sn(k − d),w) = E
[ Kn∑
k=max{1,d}

wkFn(k, d) +
Kn∑

k=max{1,d}

wkSn(k − d)
]2
,

and Fn(k, d) = f1,n(d) + f2,n(k − d).

Lemma 7. Let ŵMMA,k, ŵSMA,k, and ŵAMA,k be the kth element of ŵMMA, ŵSMA, and ŵAMA,

respectively. For any 1 ≤ k < d and 2 < q1 < max{3, q}, we have (i) Pr(ŵMMA,k > 0) =

O(n−q1/2), (ii) Pr(ŵSMA,k > 0) = O(n−q1/2), and (iii) Pr(ŵAMA,k > 0) = O(n−q1/2).

The following lemma extends Theorem 4.2 of Shibata (1980) from MS to MA.

Lemma 8.

Suppose there is another model averaging criterion S̃n(w), which is a function of model

averaging weights. Define Gn(w) = Cn(w) − g(S̃n(w)), where g(·) is a increasing function,

and Cn(w) is the Mallows model averaging criterion. Let ξdn = infw∈Hd
n
Ld
n(w) = Ld

n(w
∗
n) and

ŵd
S̃n

= argminw∈Hd
n
S̃n(w). Suppose that Assumptions 1-5 hold. If

lim
n→∞

sup
w∈Hd

n

∣∣∣Gn(w)−Gn(w
∗
n)

NLd
n(w)

∣∣∣ p−→ 0, (A.6)

then we have

lim
n→∞

Ld
n(ŵ

d
S̃n
)

Ld
n(w

∗
n)

p−→ 1,
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B Proofs of Theorems and Corollaries

Proof of Theorem 1. Based on the MSPE decomposition in Appendix A, for any w ∈ Hd
n,

E(yn+1 − ŷn+1(w))2 − σ2 = E

 Kn∑
k=max{1,d}

wk(fn(k) + Sn(k − d))

2

.

Observe that

sup
w∈Hd

n

∣∣∣∣E
[∑Kn

k=max{1,d}wk(fn(k) + Sn(k − d))
]2

Ld
n(w)

− 1

∣∣∣∣
≤ sup

w∈Hd
n

∣∣∣∣E(fn(k, d), Sn(k − d),w)− E(Fn(k, d), Sn(k − d),w)

Ld
n(w)

∣∣∣∣
+ sup

w∈Hd
n

∣∣∣∣E
[∑Kn

k=max{1,d}wk(f1,n(d) + f2,n(k − d) + Sn(k − d))
]2

Ld
n(w)

− 1

∣∣∣∣.
Thus, Theorem 1 holds by Lemmas 5 and 6. This completes the proof.

Proof of Corollary 1. Without loss of generality, we randomly choose two AR models,

AR(k1) and AR(k2), where max(1, d) ≤ k1 < k2 ≤ Kn, and construct the averaging predic-

tion based on these two models only. Let wk1,k2 be the associated weight vector such that

wk1,k2 = (0, ..., wk1 , ..., wk2 , ..., 0)
′ ∈ Hd

n with wk1 + wk2 = 1. By Theorem 1, we have

Ld
n(wk1,k2) = w2

k1

k1
N

+ (1− wk1)
2k2
N

+ 2wk1(1− wk1)
k1
N

+ w2
k1
∥a− a(k1 − d)∥2z

+ (1− wk1)
2∥a− a(k2 − d)∥2z + 2wk1(1− wk1)∥a− a(k2 − d)∥2z.

Thus, the MSPE of the MA prediction is strictly less than the MS predictor if

Ld
n(wk1,k2) <

k1
N

+ ∥a− a(k1 − d)∥2z, (B.1)

and

Ld
n(wk1,k2) <

k2
N

+ ∥a− a(k2 − d)∥2z. (B.2)

By some algebra, (B.1) and (B.2) can be rewritten as

(1− wk1)
2 k2 − k1

N
< (1− w2

k1
)
[
∥a− a(k1 − d)∥2z − ∥a− a(k2 − d)∥2z

]
, (B.3)

and

w2
k1

[
∥a− a(k1 − d)∥2z − ∥a− a(k2 − d)∥2z

]
< 2wk1(1− wk1)

k2 − k1
N

. (B.4)
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Based on the quadratic formula, (B.3) implies wk1 must lie within the following interval:

wk1 ∈
(

C(k1, k2, n)−B(k1, k2)

C(k1, k2, n) +B(k1, k2)
, 1

)
,

and (B.4) implies wk1 must be within the interval below:

wk1 ∈
(
0 ,

2C(k1, k2, n)

C(k1, k2, n) +B(k1, k2)

)
,

where C(k1, k2, n) := N−1(k2 − k1) and B(k1, k2) := ∥a− a(k1 − d)∥2z − ∥a− a(k2 − d)∥2z.
Note that C(k1, k2, n) is always greater than zero. If B(k1, k2) > 0, then(

C(k1, k2, n)−B(k1, k2)

C(k1, k2, n) +B(k1, k2)
, 1

)
∩
(
0 ,

2C(k1, k2, n)

C(k1, k2, n) +B(k1, k2)

)
∩ [0, 1] ̸= ∅,

and there exists a weight vector w◦
k1,k2

:= (0, ..., w◦
k1
, ..., w◦

k2
, ..., 0) ∈ Hd

n with w◦
k1
+ w◦

k2
= 1

such that Ld
n(w

◦
k1,k2

) < min
(
Ld
n(wk1), L

d
n(wk2)

)
, where wk1 and wk2 are vertices of Hd

n corre-

sponding to MS predictors of AR(k1) and AR(k2), respectively. Note that we do not restrict

the relationship between C(k1, k2, n) and B(k1, k2), and either C(k1, k2, n) ≥ B(k1, k2) or

C(k1, k2, n) ≤ B(k1, k2) is allowed. When C(k1, k2, n) ≥ B(k1, k2), we have

k2
N

+ ∥a− a(k2 − d)∥2z ≥
k1
N

+ ∥a− a(k1 − d)∥2z,

which implies that AR(k1) generates a smaller MSPE than AR(k2). Similarly, AR(k2) gen-

erates a smaller MSPE than AR(k1) when C(k1, k2, n) ≤ B(k1, k2).

By condition (4.6), there is a k ∈ {max(1, d), ..., Kn} such that |B(k, l)| > 0, ∀ l ̸= k. We

can repeat the above argument for all the pairs of AR(k) and AR(l) with fixed k, max(1, d) ≤
l ≤ Kn, l ̸= k. Then, for Hd

n, there are Kn −max(1, d) numbers of pairs and weight vectors

either w◦
k,l := (0, ..., w◦

k, ..., w
◦
l , ..., 0) if k < l or w◦

k,l := (0, ..., w◦
l , ..., w

◦
k, ..., 0) if l < k. Denote

Pn(w
◦
k,l) as the collection of weight vectors w◦

k,l and w⋄
n := argminPn(w◦

k,l)
Ld
n(w). Clearly,

w⋄
n in Hd

n\V (Hd
n) and Ld

n(w
⋄
n) < min(Ld

n(wk), L
d
n(wl)) for all the pairs of AR(k) and AR(l),

max(1, d) ≤ l ≤ Kn, l ̸= k. Hence, Ld
n(w

⋄
n) < minw∈V(Hd

n)
Ld
n(w). This completes the

proof.

Proof of Corollary 2. Define φ1 = 1 and φj =
∑Kn

j=2wj for anyw = (w1, w2, ..., wKn) ∈ Hd
n.

By some algebra, (4.2) can be rewritten as

Ld
n(w) =

σ2d2

N
+

σ2max(1, d)

N
+ AKn +

Kn∑
j=max(1,d)+1

φ2
j

σ2

N
+

Kn∑
j=max(1,d)+1

(1− φj)
2[Aj−1 − Aj].

(B.5)
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Then, for w∗
n ∈ Hd

n such that Ld
n(w

∗
n) = infw∈Hd

n
Ld
n(w), Ld

n(w
∗
n) can be obtained by plugging

φj =
Kn∑

j=max(1,d)+1

(
Aj−1 − Aj

σ2

N
+ Aj−1 − Aj

)
into (B.5). This completes the proof.

Proof of Theorem 2. We first show ∥ŵMMA − ŵd
MMA∥2

a.s.−→ 0. Note that

ŵMMA = ŵMMA1(ŵMMA ∈ Hn\Hd
n) + ŵMMA1(ŵMMA ∈ Hd

n)

= ŵMMA1(ŵMMA ∈ Hn\Hd
n) + ŵd

MMA.

Thus, we have

Pr
(
∥ŵMMA − ŵd

MMA∥2
)
= Pr

(
∥ŵMMA∥21(ŵMMA ∈ Hn\Hd

n)
)

= Pr
(
(
Kn∑
k=1

ŵ2
Cn,k

)1/2 1(ŵMMA ∈ Hn\Hd
n)
)

≤ Pr
(
ŵMMA ∈ Hn/Hd

n

)
= Pr(ŵMMA,k > 0, 1 ≤ k < d).

By Lemma 7 (i), we have Pr
(
∥ŵMMA − ŵd

MMA∥2
)
= O(n−q1/2), 2 < q1 < max(3, q), which is

summable. Then the result holds by Borel-Cantelli Lemma.

We next show that limn→∞ Ld
n(ŵ

d
MMA)/L

d
n(w

∗
n)

p−→ 1. Recall that ŵd
MMA = argminw∈Hd

n
Cn(w)

and Ld
n(w

∗
n) = infw∈Hd

n
Ld
n(w). Thus, we have

0 ≥ Cn(ŵ
d
MMA)− Cn(w

∗
n) = NLd

n(ŵ
d
MMA)−NLd

n(w
∗
n)− Vn(ŵ

d
MMA,w

∗
n),

Vn(ŵ
d
MMA,w

∗
n) ≥ NLd

n(ŵ
d
MMA)−NLd

n(w
∗
n) ≥ 0,

sup
w∈Hd

n

∣∣∣Vn(w,w∗
n)

NLd
n(w)

∣∣∣ ≥ Vn(ŵ
d
MMA,w

∗
n)

NLd
n(ŵ

d
MMA)

≥ 1− Ld
n(w

∗
n)

Ld
n(ŵ

d
MMA)

≥ 0.

Therefore, if

lim
n→∞

sup
w∈Hd

n

∣∣∣Vn(w,w∗
n)

NLd
n(w)

∣∣∣ p−→ 0, (B.6)

we have

lim
n→∞

Ld
n(ŵ

d
MMA)

Ld
n(w

∗
n)

p−→ 1.

For a vector v and a positive definite matrix Q, define ∥v∥2Q = v′Qv. Inspired by Eq.

(4.1) of Ing et al. (2012) and Theorem 1 in this paper, for all w ∈ Hd
n, Cn(w) can be

decomposed as below:

Cn(w) =NLd
n(w) +w′Πmin(Kn)w(σ̌2 − σ2) +w′Πmax(Kn)w(σ̌2 − σ2) + (N + d− d2)σ2 +Nσ̌2

26



+

( ∑
max(1,d)≤i, j≤Kn

wiwj

[
(max(i, j)− d)σ2

− ∥N−1/2

n−1∑
j=Kn

sj,n(max(i, j))ϵj+1,max(i,j)−d∥2Ω̂−1
n (max(i,j))

])
+
(
N

∑
max(1,d)≤i, j≤Kn

wiwj[Σ̂
2
n(max(i, j)− d)− σ2(max(i, j)− d)]

)
, (B.7)

where Σ̂2
n(l) = N−1

∑n−1
j=Kn

ϵ2j+1,l, σ
2(l) = σ2+∥a−a(l)∥2z, and ∥a−a(k)∥2z, ϵj+1,k, and Ω̂−1

n (k)

are defined after section 4.2 and (A.1).

In view of (B.7), we first rewrite (NLd
n(w))−1(Cn(w)− Cn(w

∗
n)) as

Cn(w)− Cn(w
∗
n)

NLd
n(w)

= 1− NLd
n(w

∗
n)

NLd
n(w)

− Vn(w,w∗
n)

NLd
n(w)

.

Next, (NLd
n(w))−1Vn(w,w∗

n) can be decomposed into seven parts:

V1n(w) = −w′Πmin(Kn)w(σ̌2 − σ2)

NLd
n(w)

, V2n(w,w∗
n) = −w∗′

nΠmin(Kn)w
∗
n(σ̌

2 − σ2)

NLd
n(w)

,

V3n(w) = −w′Πmax(Kn)w(σ̌2 − σ2)

NLd
n(w)

, V4n(w,w∗
n) = −w∗′

nΠmax(Kn)w
∗
n(σ̌

2 − σ2)

NLd
n(w)

,

V5n(w) = − 1

NLd
n(w)

( ∑
max(1,d)≤i, j≤Kn

wiwj

[
(max(i, j)− d)σ2

− ∥N−1/2

n−1∑
j=Kn

sj,n(max(i, j))ϵj+1,max(i,j)−d∥2Ω̂−1
n (max(i,j))

])
,

V6n(w,w∗
n) = − 1

NLd
n(w)

( ∑
max(1,d)≤i, j≤Kn

w∗
n,iw

∗
n,j

[
(max(i, j)− d)σ2

− ∥N−1/2

n−1∑
j=Kn

sj,n(max(i, j))ϵj+1,max(i,j)−d∥2Ω̂−1
n (max(i,j))

])
,

V7n(w,w∗
n) = −

∑
max(1,d)≤i, j≤Kn

(wiwj − w∗
n,iw

∗
n,j)[Σ̂

2(max(i, j)− d)− σ2(max(i, j)− d)]

Ld
n(w)

.

Observe that

sup
w∈Hn

∣∣∣Vn(w,w∗
n)

NLd
n(w)

∣∣∣ ≤ ∑
i=1,3,5

sup
w∈Hn

|Vin(w)|+
∑

j=2,4,6,7

sup
w∈Hn

|Vjn(w,w∗
n)|.

Thus, if supw∈Hd
n
|Vin(w)| = op(1) for i = 1, 3, 5 and supw∈Hd

n
|Vjn(w,w∗

n)| = op(1) for j =

2, 4, 6, 7, then (B.6) is automatically satisfied.

We now show each term is op(1). By Eq. (4.6) of Ing et al. (2012), for any k ≥ max(1, d),

σ̂2(k)− σ2 = [Σ̂2
n(k − d)− σ2(k − d)]− ∥N−1

n−1∑
j=Kn

sj,n(k)ϵj+1,k−d∥2Ω̂−1
n (k)

+ ∥a− a(k − d)∥2z.
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Similar to Lemma 7 (i), without loss of generality, let σ̌2 = σ̂2(Kn). Then,

|V1n(w)| =
∣∣∣ (w′Πmin(Kn)w)

∑
max(1,d)≤i, j≤Kn

wiwj[σ̂
2(Kn)− σ2]

NLd
n(w)

∣∣∣,
= (w′Πmin(Kn)w)

∣∣∣∑max(1,d)≤i, j≤Kn
wiwj[Σ̂

2
n(Kn − d)− σ2(Kn − d)]

NLd
n(w)

∣∣∣
+ (w′Πmin(Kn)w)

×
∣∣∣∑max(1,d)≤i, j≤Kn

wiwj∥N−1
∑n−1

j=Kn
sj,n(Kn)ϵj+1,Kn−d∥2Ω̂−1

n (Kn))

NLd
n(w)

∣∣∣
+ (w′Πmin(Kn)w)

∣∣∣∑max(1,d)≤i, j≤Kn
wiwj∥a− a(Kn − d)∥2z

NLd
n(w)

∣∣∣
= (I) + (II) + (III).

By Lemma 4.1 and Eq. (4.8) of Ing et al. (2012),
∑

max(1,d)≤i, j≤Kn
wiwj = 1, and ∥a −

a(v)∥2z ≤ ∥a− a(l)∥2z, v ≥ l, we have

(I) = Op(
w′Πmin(Kn)w

NLd
n(w)

1√
N
) = Op(

1√
N
),

(II) = Op(
w′Πmin(Kn)w

NLd
n(w)

Kn

N
) = Op(

Kn

N
),

(III) ≤ C
w′Πmin(Kn)w

N
≤ C

Kn

N
.

Then, it follows that

sup
w∈Hd

n

|V1n(w)| = Op(
1√
N

+
Kn

N
). (B.8)

Similarly,

sup
w∈Hd

n

|V2n(w,w∗
n)| ≤ |V2n(w

∗
n,w

∗
n)| ≤ sup

w∈Hd
n

|V1n(w)|.

Thus, by (B.8), we have

sup
w∈Hd

n

|V2n(w,w∗
n)| = Op(

1√
N

+
Kn

N
). (B.9)

Similar to V1n(w), we can rewrite |V3n(w)| as

|V3n(w)| =
∣∣∣ (w′Πmax(Kn)w)

∑
max(1,d)≤i, j≤Kn

wiwj[σ̂
2(Kn)− σ2]

NLd
n(w)

∣∣∣,
= (w′Πmax(Kn)w)

∣∣∣∑max(1,d)≤i, j≤Kn
wiwj[Σ̂

2
n(Kn − d)− σ2(Kn − d)]

NLd
n(w)

∣∣∣
+ (w′Πmax(Kn)w)
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×
∣∣∣∑max(1,d)≤i, j≤Kn

wiwj∥N−1
∑n−1

j=Kn
sj,n(Kn)ϵj+1,Kn−d∥2Ω̂−1

n (Kn))

NLd
n(w)

∣∣∣
+ (w′Πmax(Kn)w)

∣∣∣∑max(1,d)≤i, j≤Kn
wiwj∥a− a(Kn − d)∥2z

NLd
n(w)

∣∣∣
= (I∗) + (II∗) + (III∗),

By Lemma 4.1 and Eq. (4.8) of Ing et al. (2012),
∑

max(1,d)≤i, j≤Kn
wiwj = 1, and ∥a −

a(v)∥2z ≤ ∥a− a(l)∥2z, v ≥ l, we have

(I∗) = Op(
w′Πmax(Kn)w

N3/2Ld
n(w)

) = Op(
Kn

N3/2Ld
n(w)

),

(II∗) = Op(
Knw

′Πmax(Kn)w

N2Ld
n(w)

) = Op(
K2

n

N2Ld
n(w)

),

(III∗) ≤ C
w′Πmax(Kn)w

N
≤ C

Kn

N
.

Then, it follows that

sup
w∈Hd

n

|V3n(w)| = Op(
1

NLd
n(w

∗
n)

Kn√
N

+
1

NLd
n(w

∗
n)

K2
n

N
+

Kn

N
). (B.10)

Similar to the argument on V2n(w,w∗
n),

sup
w∈Hd

n

|V4n(w,w∗
n)| = Op(

1

NLd
n(w

∗
n)

Kn√
N

+
1

NLd
n(w

∗
n)

K2
n

N
+

Kn

N
). (B.11)

To deal with V5n(w), define

Ω̂d,n(k) =


Ω̂n(k), 1 ≤ k ≤ d,(

Γ(k − d) 0(k−d)×d

0d×(k−d) Ω̂n(d)

)
, d < k ≤ Kn.

Then, for any d ≤ k ≤ Kn∣∣∣(k − d)σ2 − ∥N−1/2

n−1∑
j=Kn

sj,n(k)ϵj+1,k−d∥2Ω̂−1
n (k)

∣∣∣
≤
∣∣∣(k − d)σ2 − ∥N−1/2

n−1∑
j=Kn

zj(k − d)ϵj+1,k−d∥2Γ−1(k−d)

∣∣∣1(k > d)

+ ∥N−1/2

n−1∑
j=Kn

Uj,n(d)ϵj+1,k−d∥2∥Ω̂−1
n (d)∥

+ ∥N−1/2

n−1∑
j=Kn

sj,n(k)ϵj+1,k−d∥2∥Ω̂−1
n (k)− Ω̂d,n(k)∥.
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Therefore, we have

|V5n(w)| ≤ 1

NLd
n(w)

∣∣∣ ∑
max(1,d)≤i, j≤Kn

wiwj

[
(max(i, j)− d)σ2

− ∥N−1/2

n−1∑
j=Kn

zj(max(i, j)− d)ϵj+1,max(i,j)−d∥2Γ−1(max(i,j)−d)

]
1(max(i, j) > d)

∣∣∣
+

1

NLd
n(w)

( ∑
max(1,d)≤i, j≤Kn

wiwj∥N−1/2

n−1∑
j=Kn

Uj,n(d)ϵj+1,max(i,j)−d∥2∥Ω̂−1
n (d)∥

)

+
1

NLd
n(w)

( ∑
max(1,d)≤i, j≤Kn

wiwj∥N−1/2

n−1∑
j=Kn

sj,n(max(i, j))ϵj+1,max(i,j)−d∥2

× ∥Ω̂−1
n (max(i, j))− Ω̂d,n(max(i, j))∥

)
= (I◦) + (II◦) + (III◦).

By Eq. (2.3), Lemma 4.2 of Ing et al. (2012), Lemmas B.1, B.3, B.4, B.6, and Theorem 1 of

Ing et al. (2010), and some algebraic manipulation, we have

(I◦) = Op(
K

1/2
n

NLd
n(w)

), (II◦) = Op(
1

NLd
n(w)

), (III◦) = Op(
1

NLd
n(w)

K2
n

N1/2
).

Then, it follows that

sup
w∈Hd

n

|V5n(w)| = Op(
K

1/2
n

NLd
n(w

∗
n)

+
1

NLd
n(w

∗
n)

+
1

NLd
n(w

∗
n)

K2
n

N1/2
). (B.12)

Similarly,

sup
w∈Hd

n

|V6n(w,w∗
n)| = Op(

K
1/2
n

NLd
n(w

∗
n)

+
1

NLd
n(w

∗
n)

+
1

NLd
n(w

∗
n)

K2
n

N1/2
). (B.13)

Since
∑Kn

k=max(1,d) wk = 1 and
∑Kn

k=max(1,d) w
∗
k = 1, |V7n(w,w∗

n)| can be decomposed as

|V7n(w,w∗
n)| ≤

∣∣∣∑max(1,d)≤i j≤Kn
wiwj[Σ̂

2(max(i, j))− σ2
( max(i, j))− {Σ̂2(Kn)− σ2(Kn)}]

Ld
n(w)

∣∣∣
+
∣∣∣∑max(1,d)≤i j≤Kn

w∗
n,iw

∗
n,j[Σ̂

2(max(i, j))− σ2(max(i, j))− {Σ̂2(Kn)− σ2(Kn)}]
Ld
n(w)

∣∣∣
≤
∣∣∣∑max(1,d)≤i j≤Kn

wiwj[Σ̂
2(max(i, j))− σ2(max(i, j))− {Σ̂2(Kn)− σ2(Kn)}]

Ld
n(w)

∣∣∣
+
∣∣∣∑max(1,d)≤i j≤Kn

w∗
n,iw

∗
n,j[Σ̂

2(max(i, j))− σ2(max(i, j))− {Σ̂2(Kn)− σ2(Kn)}]
Ld
n(w

∗
n)

∣∣∣).
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By Eq. (4.4) of Ing et al. (2012), we have

|V7n(w,w∗
n)| = Op(

∑
max(1,d)≤i j≤Kn

wiwj∥a(max(i, j))− a(Kn)∥z
N1/2Ld

n(w)
)

≤ Op(

∑
max(1,d)≤i j≤Kn

wiwj∥a− a(max(i, j))∥z
(Ld

n(w))1/2
1

(NLd
n(w))1/2

)

≤ Op(
1

(NLd
n(w))1/2

).

Then, it follows that

sup
w∈Hd

n

|V7n(w,w∗
n)| = Op(

1

(NLd
n(w

∗
n))

1/2
). (B.14)

By (B.8)-(B.14), limn→∞Nξdn → ∞, and Assumptions 4 and 5, we have

sup
w∈Hn

∣∣∣Vn(w,w∗
n)

NLd
n(w)

∣∣∣ ≤ ∑
i=1,3,5

sup
w∈Hn

|Vin(w)|+
∑

j=2,4,6,7

sup
w∈Hn

|Vjn(w,w∗
n)| = op(1).

Thus, (B.6) is satisfied and limn→∞ Ld
n(ŵ

d
MMA)/L

d
n(w

∗
n)

p−→ 1 holds. This completes the

proof.

Proof of Theorem 3. For (i), note that

Ld
n(w

∗
1,k) =

σ2d2

N
+ σ2k

∗
n

N
+ Ak∗n .

Then, by the algebraic-decay condition and the argument as giving in Eq. (A.9) in Ing and

Wei (2005), we have

k∗
n = O(N1/(α+1)) and Ld

n(w
∗
1,k) = O(N−α/(α+1)), (B.15)

where w∗
1,k is the optimal unit weight vector defined after Section 4.4, and k∗

n is the optimal

order for (4.5) under MS. In other words, the k∗
nth element of w∗

1,k equals one and others are

zeros.

Observe that

∆n = Ld
n(w

∗
1,k)− Ld

n(w
∗
n)

=

k∗n∑
j=max(1,d)+1

[
σ2

N

(
1− Aj−1 − Aj

σ2

N
+ Aj−1 − Aj

)]
+

Kn∑
j=k∗n+1

[
(Aj−1 − Aj)

(
1−

σ2

N
σ2

N
+ Aj−1 − Aj

)]
= (I) + (II) (B.16)

and ∆n ≤ Ld
n(w

∗
1,k). To show ∆n ≍ Ld

n(w
∗
1,k), it is sufficient to show that (I) ≥ c Ld

n(w
∗
1,k),

where c is a positive constant greater than zero. Since Aj = C(j − d)−α, we have

(I) =
σ2

N

k∗n∑
j=max(1,d)+1

( σ2

N
σ2

N
+ Aj−1 − Aj

)
=

σ2

N

k∗n∑
j=max(1,d)+1

( σ2

N
σ2

N
+ C(j − 1− d)−α − C(j − d)−α

)
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≥ C
σ2

N

k∗n∑
j=max(1,d)+1

(
σ2(j − 1− d)α

σ2(j − 1− d)α +N
[
1−

(
1− 1

j−d

)α])

≥ C
σ2

N

k∗n∑
j=max(1,d)+1

(
σ2(j − 1− d)α(j − d)

σ2(j − 1− d)α(j − d) +N

)

≥ C
σ2

N

k∗n∑
j=max(1,d)+1

(
σ2(j − 1− d)α+1

σ2(k∗
n)

α+1 +N

)

≥ C
σ2

N

1

σ2(k∗
n)

α+1 +N

k∗n∑
j=max(1,d)+1

(j − 1− d)α+1

≥ C
σ2

N

1

σ2(k∗
n)

α+1 +N

[
(k∗

n − 1− d)α+2
]
≥ C

k∗
n

N
= CN−α/(α+1), (B.17)

where the second inequality is insured by 1 − (1 − x)p ≤ Cx, p > 0, 0 < x < 1, and the

last inequality holds by k∗
n = O(N1/(α+1)). By (B.15)-(B.17) and ∆n ≤ Ld

n(w
∗
1,k), we have

∆n ≍ Ld
n(w

∗
1,k) under the algebraic-decay scenario.

For (ii), by the exponential-decay condition and the argument as Eq. (A.1)-(A.5) in Ing

and Wei (2005), we have

k∗
n = O(

1

α
log(N)) and Ld

n(w
∗
1,k) = O(

1
α
log(N)

N
). (B.18)

To show ∆n = o(Ld
n(w

∗
1,k)), it is sufficient to show that (I) and (II) in (B.16) are o(N−1 log(N)).

Since d is finite by Assumption 1, Aj = C exp(−α(j−d)) = C exp(−α(j)), and Aj−1−Aj =

C(1− exp(−α))−1 exp(α(j)), we have

(I) =
σ2

N

k∗n∑
j=max(1,d)+1

( σ2

N
σ2

N
+ Aj−1 − Aj

)
≤ C

( σ2

N

)2 k∗n∑
j=max(1,d)+1

(
1

Aj−1 − Aj

)

≤ C
( σ2

N

)2( 1

1− exp(−α)

)exp(αk∗
n)− exp(αmax(1, d))

e− 1
= O(

1

N
), (B.19)

and

(II) =
Kn∑

j=k∗n+1

[
(Aj−1 − Aj)

(
1−

σ2

N
σ2

N
+ Aj−1 − Aj

)]
= C

Kn∑
j=k∗n+1

[(
(Aj−1 − Aj)

2

σ2

N
+ Aj−1 − Aj

)]

≤ C

Kn∑
j=k∗n+1

(
Aj−1 − Aj

)
≤ C

1

1− exp(−α)
×
(
exp(−αk∗

n) + ...+ exp(−α(Kn − 1))

)
≤ C exp(−αk∗

n)

[
1− exp(−α(Kn − k∗

n + 1))

]
= O(

1

N
). (B.20)

Thus, by (B.18)-(B.20), we have ∆n = o(Ld
n(w

∗
1,k)). This completes the proof.
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Proof of Corollary 3. First, we show that Ld
n(w

∗
n) ≍ Ld

n(w
∗
1,k) under either exponential or

algebraic decay. By the representation in Corollary 2, we have

Ld
n(w

∗
n) >

Kn∑
j=max(1,d)+1

σ2

N
(Aj−1 − Aj)

σ2

N
+ Aj−1 − Aj

>

k∗n∑
j=max(1,d)+1

σ2

N
(Aj−1 − Aj)

σ2

N
+ Aj−1 − Aj

> Cσ2k
∗
n

N
≥ cLd

n(w
∗
1,k),

for some c > 0, where the third inequality holds by N−1σ2 < C(Aj−1−Aj), j = max(1, d)+

1, ..., k∗
n for some large enough C under either exponential or algebraic decay. Hence,

Ld
n(w

∗
n) ≍ Ld

n(w
∗
1,k) holds under either exponential or algebraic decay.

Next, observe that

∆̂n

Ld
n(ŵ

d
MS)

= 1− Ld
n(ŵ

d
MA)

Ld
n(w

∗
n)

Ld
n(w

∗
n)

Ld
n(w

∗
1,k)

Ld
n(w

∗
1,k)

Ld
n(ŵ

d
MS)

=
∆n

Ld
n(w

∗
1,k)

+
Ld
n(w

∗
n)

Ld
n(w

∗
1,k)

(
1− Ld

n(ŵ
d
MA)

Ld
n(w

∗
n)

Ld
n(w

∗
1,k)

Ld
n(ŵ

d
MS)

)
=

∆n

Ld
n(w

∗
1,k)

+ o(1),

where the last equality is insured by the condition (4.9) and the fact that Ld
n(w

∗
n) ≍ Ld

n(w
∗
1,k).

Thus, by Theorem 3, we have ∆̂n ≍ Ld
n(ŵ

d
MS) and ∆̂n = o(Ld

n(ŵ
d
MS)) under algebraic and

exponential decay, respectively.

We now show that Ld
n(ŵ

d
MA) ≍ Ld

n(ŵ
d
MS). Observe that

Ld
n(ŵ

d
MA)

Ld
n(ŵ

d
MS)

=
Ld
n(ŵ

d
MA)

Ld
n(w

∗
n)

Ld
n(w

∗
n)

Ld
n(w

∗
1,k)

Ld
n(w

∗
1,k)

Ld
n(ŵ

d
MS)

.

Then, by the condition (4.9) and Ld
n(w

∗
n) ≍ Ld

n(w
∗
1,k), we have Ld

n(ŵ
d
MA) ≍ Ld

n(ŵ
d
MS) under

either exponential or algebraic decay. This completes the proof.

Proof of Theorem 4.

Part I: Shibata model averaging criterion

The strategy of the proof is to show that Shibata model averaging weights ŵSMA satisfy (4.7)

and (4.8). First, ŵSMA satisfy (4.7) by the same arguments as the proofs of the first part of

Theorem 2 and Lemma 7 (ii). To show that ŵd
SMA satisfy (4.8), we will check the condition

(A.6) in Lemma 8 holds. Note that the difference between Shibata model averaging criterion

and Mallows model averaging criterion is

Gn(w) = Sn(w)− Cn(w) = −(w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2
w) +Nσ̌2.

Then, it follows that

|Gn(w)−Gn(w
∗
n)| ≤|(w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2

w)|
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+ |(w∗′
n [Πmin(Kn) + Πmax(Kn)]w

∗
n)(σ̌

2 − σ̂2
w∗)|, (B.21)

where

σ̂2
w =

1

N

n−1∑
t=Kn

(yt+1 − ŷt+1(w))2 =
1

N

n−1∑
t=Kn

(yt+1 +
Kn∑
k=1

wky
′
tân(k))

2,

σ̂2
w∗ =

1

N

n−1∑
t=Kn

(yt+1 − ŷt+1(w
∗
n))

2 =
1

N

n−1∑
t=Kn

(yt+1 +
Kn∑
k=1

w∗
n,ky

′
tân(k))

2,

and w∗
n,k is the kth element of w∗

n.

We next show that

sup
w∈Hd

n

∣∣∣(w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2
w)

NLd
n(w)

∣∣∣ = op(1). (B.22)

Observe that

σ̂2
w =

1

N

n−1∑
t=Kn

(yt+1 +
Kn∑
k=1

wky
′
tân(k))

2 =
1

N

n−1∑
t=Kn

(
Kn∑
k=1

wk[yt+1 + y′
tân(k)])

2

=
∑

1≤i, j≤Kn

wiwjσ̂
2(max(i, j)),

where σ̂2(k) = N−1
∑n−1

t=Kn
(yt+1 − ŷt+1(k))

2 = N−1
∑n−1

t=Kn
(yt+1 + y′

tân(k))
2. Then, it follows

that

sup
w∈Hd

n

∣∣∣(w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2
w)

NLd
n(w)

∣∣∣
≤ sup

w∈Hd
n

∣∣∣(w′Πmin(Kn)w)(
∑

max(1,d)≤i, j≤Kn
wiwj[σ̂

2(max(i, j))− σ2])

NLd
n(w)

∣∣∣
+ sup

w∈Hd
n

∣∣∣(w′Πmin(Kn)w)(σ̌2 − σ2)

NLd
n(w)

∣∣∣
+ sup

w∈Hd
n

∣∣∣(w′Πmax(Kn)w)(
∑

max(1,d)≤i, j≤Kn
wiwj[σ̂

2(max(i, j))− σ2])

NLd
n(w)

∣∣∣
+ sup

w∈Hd
n

∣∣∣(w′Πmax(Kn)w)(σ̌2 − σ2)

NLd
n(w)

∣∣∣
≤C
(

sup
w∈Hd

n

|U1n(w)|+ |σ̌2 − σ2|+ sup
w∈Hd

n

|U2n(w)|+ sup
w∈Hd

n

∣∣∣w′Πmax(Kn)w

NLd
n(w)

(σ̌2 − σ2)
∣∣∣), (B.23)

where

U1n(w) =
w′Πmin(Kn)w(σ̂2

w − σ2)

NLd
n(w)

and U2n(w) =
w′Πmax(Kn)w(σ̂2

w − σ2)

NLd
n(w)

.
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By Eq. (4.6) of Ing et al. (2012), for any k ≥ max(1, d), we have

σ̂2(k)− σ2 = [Σ̂2
n(k − d)− σ2(k − d)]− ∥N−1

n−1∑
j=Kn

sj,n(k)ϵj+1,k−d∥2Ω̂−1
n (k))

+ ∥a− a(k − d)∥2z.

Then, it follows that

|U1n(w)| =
∣∣∣ (w′Πmin(Kn)w)

∑
max(1,d)≤i, j≤Kn

wiwj[σ̂
2(max(i, j))− σ2]

NLd
n(w)

∣∣∣
= (w′Πmin(Kn)w)

∣∣∣∑max(1,d)≤i, j≤Kn
wiwj[Σ̂

2
n(max(i, j)− d)− σ2(max(i, j)− d)]

NLd
n(w)

∣∣∣
+ (w′Πmin(Kn)w)

×
∣∣∣∑max(1,d)≤i, j≤Kn

wiwj∥N−1
∑n−1

j=Kn
sj,n(max(i, j))ϵj+1,max(i,j)−d∥2Ω̂−1

n (max(i,j)))

NLd
n(w)

∣∣∣
+ (w′Πmin(Kn)w)

∣∣∣∑max(1,d)≤i, j≤Kn
wiwj∥a− a(max(i, j)− d)∥2z
NLd

n(w)

∣∣∣
= (Ĩ) + (ĨI) + ( ˜III).

By Lemma 4.1 and Eq. (4.8) of Ing et al. (2012) and
∑

max(1,d)≤i, j≤Kn
wiwj = 1, we have

(Ĩ) = Op(
1√
N
), (ĨI) = Op(

Kn

N
), and ( ˜III) ≤ C

Kn

N
.

Then, it follows that

sup
w∈Hd

n

|U1n(w)| = Op(
1√
N

+
Kn

N
). (B.24)

Similar to U1n(w), we can rewrite

|U2n(w)| =
∣∣∣ (w′Πmax(Kn)w)

∑
max(1,d)≤i, j≤Kn

wiwj[σ̂
2
max(i,j) − σ2]

NLd
n(w)

∣∣∣
= (w′Πmax(Kn)w)

∣∣∣∑max(1,d)≤i, j≤Kn
wiwj[Σ̂

2
n(max(i, j)− d)− σ2(max(i, j)− d)]

NLd
n(w)

∣∣∣
+ (w′Πmax(Kn)w)

×
∣∣∣∑max(1,d)≤i, j≤Kn

wiwj∥N−1
∑n−1

j=Kn
sj,n(max(i, j))ϵj+1,max(i,j)−d∥2Ω̂−1

n (max(i,j)))

NLd
n(w)

∣∣∣
+ (w′Πmax(Kn)w)

∣∣∣∑max(1,d)≤i, j≤Kn
wiwj∥a− a(max(i, j)− d)∥2z
NLd

n(w)

∣∣∣
= (I∗∗) + (II∗∗) + (III∗∗).

By Lemma 4.1 and Eq. (4.8) of Ing et al. (2012) and
∑

max(1,d)≤i, j≤Kn
wiwj = 1, we have

(I∗∗) = Op(
Kn

N3/2Ld
n(w)

), (II∗∗) = Op(
K2

n

N2Ld
n(w)

), and (III∗∗) ≤ C
Kn

N
.
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Then, it follows that

sup
w∈Hd

n

|U2n(w)| = Op(
1

NLd
n(w

∗
n)

Kn√
N

+
1

NLd
n(w

∗
n)

K2
n

N
+

Kn

N
). (B.25)

By (B.23)-(B.25), similar arguments for (B.25), and the fact that σ̌2 = σ̂2(Kn) is consis-

tent for σ2, we have

sup
w∈Hd

n

∣∣∣(w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2
w)

NLd
n(w)

∣∣∣
≤ C

(
Op(

1√
N

+
Kn

N
) + op(1) +Op(

1

NLd
n(w

∗
n)

Kn√
N

+
1

NLd
n(w

∗
n)

K2
n

N
+

Kn

N
)
)
.

Therefore, (B.22) holds.

Note that

sup
w∈Hd

n

∣∣∣(w∗′
n [Πmin(Kn) + Πmax(Kn)]w

∗
n)(σ̌

2 − σ̂2
w∗)

NLd
n(w)

∣∣∣
≤ sup

w∈Hd
n

∣∣∣(w∗′
n [Πmin(Kn) + Πmax(Kn)]w

∗
n)(σ̌

2 − σ̂2
w∗)

NLd
n(w

∗)

∣∣∣
≤ sup

w∈Hd
n

∣∣∣(w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2
w)

NLd
n(w)

∣∣∣.
Therefore, by (B.22), we have

sup
w∈Hd

n

∣∣∣(w∗′
n [Πmin(Kn) + Πmax(Kn)]w

∗
n)(σ̌

2 − σ̂2
w∗)

NLd
n(w)

∣∣∣ = op(1). (B.26)

Thus, by (B.22) and (B.26), Sn(w)−Cn(w) satisfies the condition (A.6) of Lemma 8, which

implies that ŵd
SMA satisfies (4.8). Therefore, without knowing the integration order, the Shi-

bata model averaging estimator is asymptotically optimal in the sense of achieving (4.7) and

(4.8).

Part II: Akaike model averaging criterion

Similar to the Shibata model averaging estimator, we will show that the Akaike model aver-

aging weights ŵAMA satisfy (4.7) and (4.8). First, ŵAMA satisfy (4.7) by the same arguments

as the proofs of the first part of Theorem 2 and Lemma 7 (iii). To show that ŵd
AMA satisfy

(4.8), we will check whether the condition (A.6) in Lemma 8 holds. Let g(x) = N exp(x).

The difference between the Mallows model averaging criterion and the transformation of the

Akaike model averaging criterion is

Gn(w) = Cn(w)− g(An(w))

36



= (w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2
w)−Nσ̌2

+Nσ̂2
w

(
1 +

w′[Πmin(Kn) + Πmax(Kn)]w

N
− exp(

w′[Πmin(Kn) + Πmax(Kn)]w

N
)

)
.

Then, it follows that

|Gn(w)−Gn(w
∗
n)|

≤|(w′[Πmin(Kn) + Πmax(Kn)]w)(σ̌2 − σ̂2
w)|+ |(w∗′

n [Πmin(Kn) + Πmax(Kn)]w
∗
n)(σ̌

2 − σ̂2
w∗)|

+

∣∣∣∣Nσ̂2
w(1 +

w′[Πmin(Kn) + Πmax(Kn)]w

N
− exp(

w′[Πmin(Kn) + Πmax(Kn)]w

N
))

∣∣∣∣
+

∣∣∣∣Nσ̂2
w∗(1 +

w∗′
n [Πmin(Kn) + Πmax(Kn)]w

∗′
n

N
− exp(

w∗′
n [Πmin(Kn) + Πmax(Kn)]w

∗
n

N
))

∣∣∣∣
=V V1n(w) + V V2n(w

∗
n) + V V3n(w) + V V4n(w

∗
n). (B.27)

By (B.21), (B.22), and (B.26), we have

sup
w∈Hd

n

∣∣∣V V1n(w)

NLd
n(w)

∣∣∣ = op(1) and sup
w∈Hd

n

∣∣∣V V2n(w
∗
n)

NLd
n(w)

∣∣∣ = op(1). (B.28)

For sufficiently large n, it follows that∣∣V V3n(w) + V V4n(w
∗
n)
∣∣

≤
∣∣∣∣Nσ̂2

w(
w′[Πmin(Kn) + Πmax(Kn)]w

N
)2
∣∣∣∣+ ∣∣∣∣Nσ̂2

w∗(
w∗

n[Πmin(Kn) + Πmax(Kn)]w
∗
n

N
)2
∣∣∣∣

≤
∣∣∣∣N(σ̂2

w − σ2)(
w′[Πmin(Kn) + Πmax(Kn)]w

N
)2
∣∣∣∣+ ∣∣∣∣Nσ2(

w′[Πmin(Kn) + Πmax(Kn)]w

N
)2
∣∣∣∣

+

∣∣∣∣N(σ̂2
w∗ − σ2)(

w∗′
n [Πmin(Kn) + Πmax(Kn)]w

∗
n

N
)2
∣∣∣∣+ ∣∣∣∣Nσ2(

w∗′
n [Πmin(Kn) + Πmax(Kn)]w

∗
n

N
)2
∣∣∣∣,

(B.29)

where the first inequality holds by |1 + x− exp(x)| ≤ |x|2 if |x| ≤ 1.

Therefore, by (B.29) and similar arguments on V2n(w,w∗
n), we have

sup
w∈Hd

n

∣∣∣V V3n(w) + V V4n(w
∗
n)

NLd
n(w)

∣∣∣ ≤C( sup
w∈Hd

n

|U1n(w)|+ sup
w∈Hd

n

|U2n(w)|+ K2
n

N

1

NLd
n(w

∗
n)
), (B.30)

where U1n(w) and U2n(w) are defined after (B.23).

Thus, by (B.24)-(B.25), (B.27)-(B.30), and Assumption 4, it follows that

sup
w∈Hd

n

∣∣∣Gn(w)−Gn(w
∗
n))

NLd
n(w)

∣∣∣ = op(1),

which implies that ŵd
AMA satisfy (4.8) by Lemma 8. This completes the proof.
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The supplementary material includes two parts. S.1 contains the proofs of supplementary

lemmas, and S.2 provides additional simulation results.

S.1 Proofs of Supplementary Lemmas

Proof of Lemma 1. Observe that

E
( Kn∑

k=1

wk(ϵn+1,k − ϵn+1)
)2 − ∑

0≤i,j≤Kn

wiwj∥a− a(max{i, j})∥2z

=
Kn∑
k=0

w2
kE(ϵn+1,k − ϵn+1)

2 −
Kn∑
k=0

w2
k∥a− a(max(k))∥2z

+
∑
k ̸=l

wkwl

{
E
[
(ϵn+1,k − ϵn+1)(ϵn+1,l − ϵn+1)

]
− ∥a− a(max{k, l})∥2z

}
= (I) + (II).

Note that (I) is o(n−1) by Lemma B.5 of Ing et al. (2010).

We next show that (II) is o(n−1). Denote ai − ai(k) by γi(k). Since

ϵn+1,k − ϵn+1 =
n∑

i=1

γi(k)zn+1−i =
n∑

i=1

γi(k)(zn+1−i − zn+1−i,∞) +
n∑

i=1

γi(k)zn+1−i,∞,

then it follows that

|(II)| ≤ |(III)|+ |(IV )|+ |(V )|+ |(V I)|,

where

(III) :=
∑
k ̸=l

wkwl

{
E
[
(

n∑
i=1

γi(k)zn+1−i,∞)(
n∑

i=1

γi(l)zn+1−i,∞)
]
− ∥a− a(max{k, l})∥2z

}
,

1



(IV ) :=
∑
k ̸=l

wkwlE

{[ n∑
i=1

γi(k)(zn+1−i − zn+1−i,∞)
][ n∑

i=1

γi(l)(zn+1−i − zn+1−i,∞)
]}

,

(V ) :=
∑
k ̸=l

wkwlE

{[ n∑
i=1

γi(k)(zn+1−i − zn+1−i,∞)
][ n∑

i=1

γi(l)(zn+1−i,∞)
]}

,

(V I) :=
∑
k ̸=l

wkwlE

{[ n∑
i=1

γi(k)(zn+1−i,∞)
][ n∑

i=1

γi(l)(zn+1−i − zn+1−i,∞)
]}

.

By Cauchy-Schwarz inequality and Eq. (B.17) of Ing et al. (2010), we have |(IV )| = o(n−1).

Next, since zn+1−i,∞ − zn+1−i =
∑∞

j=n−i bjϵn+1−i−j, it follows that

∑
k ̸=l

wkwlE

{[ n∑
i=1

γi(k)(zn+1−i,∞)
][ n∑

i=1

γi(l)(zn+1−i − zn+1−i,∞)
]}

=
∑
k ̸=l

wkwlE

{[ n∑
i=1

γi(k)(zn+1−i − zn+1−i,∞)
][ n∑

i=1

γi(l)(zn+1−i − zn+1−i,∞)
]}

.

Thus, by the fact that |(IV )| = o(n−1), we have |(V )| = o(n−1) and |(V I)| = o(n−1).

We now show |(III)| = o(n−1). By Eq. (3.2) of Ing and Wei (2003), we have

E
[
(

∞∑
i=1

γi(k)zn+1−i,∞)(
∞∑
i=1

γi(l)zn+1−i,∞)
]
= ∥a− a(max{k, l})∥2z.

Then, it follows that

|(III)| = |
∑
k ̸=l

wkwl

{
E
[
(

n∑
i=1

γi(k)zn+1−i,∞)(
n∑

i=1

γi(l)zn+1−i,∞)
]
− ∥a− a(max{k, l})∥2z

}
|

= |
∑
k ̸=l

wkwl

{
E
[
(

n∑
i=1

γi(k)zn+1−i,∞)(
n∑

i=1

γi(l)zn+1−i,∞)
]}

− E
[
(

∞∑
i=1

γi(k)zn+1−i,∞)(
∞∑
i=1

γi(l)zn+1−i,∞)
]}

|

≤ |
∑
k ̸=l

wkwl

{
E
[
(

∞∑
i=n+1

γi(k)zn+1−i,∞)(
n∑

i=1

γi(l)zn+1−i,∞)
]}
|

+ |
∑
k ̸=l

wkwl

{
E
[
(

n∑
i=1

γi(k)zn+1−i,∞)(
∞∑

i=n+1

γi(l)zn+1−i,∞)
]}

|

+ |
∑
k ̸=l

wkwl

{
E
[
(

∞∑
i=n+1

γi(k)zn+1−i,∞)(
∞∑

i=n+1

γi(l)zn+1−i,∞)
]}

|

= (V II) + (V III) + (IX).
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By (2.2) and
∑∞

j=1 |jaj| < ∞, we have

E
[
(

∞∑
i=n+1

γi(k)zn+1−i,∞)(
∞∑

i=n+1

γi(l)zn+1−i,∞)
]
= χ0

∞∑
j=n+1

a2j +
∞∑

n+1≤ i,j, i̸=j

aiajχ|i−j| = o(n−2),

where χi−j = E(zi,∞zj,∞). Thus, we have (IX) = o(n−2).

For (V III), we choose 0 < ρ < 1 such that ρn > Kn. Then, it follows that

(V III) =γ1(k)
∞∑

i=n+1

γi(k)χi−1 + γ2(k)
∞∑

i=n+1

γi(k)χi−2 + · · ·+ γn(k)
∞∑

i=n+1

γi(k)χi−n

=γ1(k)
∞∑

i=n+1

γi(k)χi−1 + · · ·+ γρn(k)
∞∑

i=n+1

γi(k)χi−ρn

+ γρn+1(k)
∞∑

i=n+1

γi(k)χi−(ρn+1) + · · ·+ γn(k)
∞∑

i=n+1

γi(k)χi−n.

By (2.2), we have

γρn+1(k)
∞∑

i=n+1

γi(k)χi−(ρn+1) + · · ·+ γn(k)
∞∑

i=n+1

γi(k)χi−n

≤ C(
∞∑

i=n+1

|γi(k)|)(
∞∑

i=ρn+1

|γi(k)|) = o(n−2), (S.1)

χn+1−(ρn) = χ(1−ρ)n+1 = E(zt,∞zt−(1−ρ)n−1,∞)

= E
[
(

∞∑
j=0

bjϵt−j)(
∞∑
j=0

bjϵt−ρ)n−1−j)
]
≤ C

∞∑
j=(1−ρ)n+1

|bj| = o(n−1),

and

γ1(k)
∞∑

i=n+1

γi(k)χi−1 + · · ·+ γρn(k)
∞∑

i=n+1

γi(k)χi−ρn

≤ C(ρn)(
∞∑

i=n+1

|ai|)(
∞∑

j=(1−ρ)n+1

|bj|) = o(n−1) (S.2)

By (S.1) and (S.2), we have (V III) = o(n−1). By similar arguments, we have (V II) =

o(n−1). Since (I) − (IX) are o(n−1), the statement of Lemma 1 holds. This completes the

proof.

Proof of Lemma 2. For (i), it suffices to show that

lim
n→∞

sup
w∈Hd

n

E

∣∣∣∣
√
N√

w′Πmin(Kn)w− d

[ Kn∑
k=max{1,d}

wk(f2,n(k − d)− f ∗
2,n(k − d))

]∣∣∣∣2 = 0. (S.3)

3



Observe that

|
√

N

k − d
[f2,n(k − d)− f ∗

2,n(k − d)]| ≤ |A1(k − d) + A2(k − d)|,

where

A1(k − d) =

{
(z′n(k − d)− z∗

′

n (k − d))Γ−1(k − d)
1√

N(k − d)

n−1∑
j=Kn

zj(k − d)ϵj+1

}
1(k > d),

A2(k − d) =

{
z∗

′

n (k − d)Γ−1(k − d)
1√

N(k − d)

n−1∑
j=n−

√
n

zj(k − d)ϵj+1

}
1(k > d).

For any p ≥ 2, by Hölder inequality, we have

E(|A1(k − d)|p) ≤ E(∥a1(k − d)∥3p)1/3E(∥a2(k − d)∥3p)1/3E(∥a3(k − d)∥3p)1/3,

where

a1(k − d) =
(
zn − z∗n, ..., zn−k+d+1 − z∗n−k+d+1

)′
=
( ∞∑
j=

√
n−Kn+1

bjϵn−j, ...,
∞∑

j=
√
n−Kn+1

bjϵn−k+d+1−j

)′
,

a2(k − d) = Γ−1(k − d), and a3(k − d) = [N(k − d)]−1/2

n−1∑
j=Kn

zj(k − d)ϵj+1.

By Lemma B.3 of Ing et al. (2010), (2.3), and Assumption 3, for all d < k ≤ Kn, we have

E(∥a1(k − d)∥3p) ≤ C
[
(k − d)

∞∑
j=

√
n−Kn+1

b2j
]3p/2

,

E(∥a2(k − d)∥3p) ≤ C, and E(∥a3(k − d)∥3p) ≤ C.

Then, it follows that

E(|A1(k − d)|p) ≤ C
[
(k − d)

∞∑
j=

√
n−Kn+1

b2j
]p/2 ≤ C((Kn − d)

∞∑
j=

√
n−Kn+1

b2j)
p/2. (S.4)

Similarly,

E(|A2(k − d)|p) ≤ E(∥b1(k − d)∥3p)1/3E(∥a2(k − d)∥3p)1/3E(∥b2(k − d)∥3p)1/3,

where b1(k − d) = z∗
′

n (k − d) and b2(k − d) = [N(k − d)]−1/2
∑n−1

j=n−
√
n zj(k − d)ϵj+1. By

Lemma B.3 of Ing et al. (2010), we have

E(∥b1(k − d)∥3p) ≤ C(k − d)3p/2, E(∥a3(k − d)∥3p) ≤ C(
√
N)3p/2.
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Then, it follows that

E(|A2(k − d)|p) ≤ C(
k − d√

N
)p/2 ≤ C(

Kn − d√
N

)p/2. (S.5)

Therefore, by (S.4) and (S.5), we have

E
∣∣(√N

i
[f2,n(i)−f ∗

2,n(i)]
)(√N

j
[f2,n(j)−f ∗

2,n(j)]
)∣∣p ≤ C

{
[(Kn−d)

∞∑
j=

√
n−Kn+1

b2j ]
p/2+(

Kn − d√
N

)p/2
}
,

(S.6)

and for any w ∈ Hd
n,∑

max(1,d)≤i,j≤Kn
wiwj

√
i− d

√
j − d

w′Πmin(Kn)w− d
=

∑
max(1,d)≤i,j≤Kn

wiwj

√
i− d

√
j − d∑

max(1,d)≤i,j≤Kn
wiwj min{i, j} − d

≤
√
Kn − d.

(S.7)

Thus, by (S.6) and (S.7), it follows that

E

∣∣∣∣
√
N√

w′Πmin(Kn)w− d

[ Kn∑
k=max{1,d}

wk(f2,n(k − d)− f ∗
2,n(k − d))

]∣∣∣∣2

≤ C

∑
max(1,d)≤i,j≤Kn

wiwj

√
i− d

√
j − d

w′Πmin(Kn)w− d

{
[(Kn − d)

∞∑
j=

√
n−Kn+1

b2j ] + (
Kn − d√

N
)

}

≤ C
√

Kn − d

{
[(Kn − d)

∞∑
j=

√
n−Kn+1

b2j ] + (
Kn − d√

N
)

}

≤ C
∞∑

j=
√
n−Kn+1

|jbj|2 +
√

K3
n

N
. (S.8)

Therefore, (S.3) holds by (S.8), (2.3), and Assumption 4.

For (ii), it suffices to show that

lim
n→∞

sup
w∈Hd

n

E

∣∣∣∣
√
N√

w′Πmin(Kn)w− d

[ Kn∑
k=max{1,d}

wk(f
∗
2,n(k − d)− f ∗

2,n,∞(k − d))
]∣∣∣∣2 = 0. (S.9)

where

f ∗
2,n(k − d)− f ∗

2,n,∞(k − d) =

{
z∗

′
n (k − d)√

N
Γ−1(k − d)

1√
N

n−
√
n−1∑

j=Kn

z̃j,∞(k − d)ϵj+1

}
1(k > d)

and

z̃t,∞(v) =
(
z̃t,∞, ..., z̃t−v+1,∞

)′
=
(
zt,∞−zt, ..., zt−v+1,∞−zt−v+1

)′
=
( ∞∑

j=t

bjϵt−j, ...,

∞∑
j=t−v+1

bjϵt−v+1−j

)′
.
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By Hölder inequality, Lemma B.3 of Ing et al. (2010), and Lemma 2 of Wei (1987), we have

E
∣∣√N

Kn∑
k=max{1,d}

wk[f
∗
2,n(k − d)− f ∗

2,n,∞(k − d)]
∣∣p

≤
Kn∑

k=max{1,d}

wkE
∣∣√N [f ∗

2,n(k − d)− f ∗
2,n,∞(k − d)]

∣∣p
≤

Kn∑
k=max{1,d}

wk(E∥z∗
′

n (k − d)∥3p)1/3(E∥Γ−1(k − d)∥3p)1/3(E∥ 1√
N

n−
√
n−1∑

j=Kn

z̃j,∞(k − d)ϵj+1∥3p)1/3

≤ C max
1≤k≤Kn−d

kp/2kp/2(N−1

n−
√
n−1∑

t=Kn

E(z̃t,∞)2)p/2 ≤ CKp
n(N

−1

n−
√
n−1∑

t=Kn

∞∑
i=t

b2i )
p/2

≤ C(
∞∑

i=Kn

|ibi|2)p/2 (S.10)

Therefore, (S.9) holds by (S.10) and (2.3). This completes the proof.

Proof of Lemma 3. The result (i) is a special case of the result (ii) and we omit the proof

for brevity. Without loss of generality, we assume that k < l. Define

Γk,l(0) = E(zt,∞(k)z
′

t,∞(l)) =
(
Γ(k),Γ(k, l − k)

)
,

Γl,k(0) = E(zt,∞(l)z
′

t,∞(k)) =

(
Γ(k)

Γ(l − k, k)

)
,

Γ∗
l,k(0) = E(z∗t (l)z

∗′
t (k)) =

(
Γ∗(k)

Γ∗(l − k, k)

)
,

where Γ∗(k) = E(z∗t (k)z
∗′
t (k)) is a k × k matrix, Γk,l(0) is a k × l matrix, and Γl,k(0) and

Γ∗
l,k(0) are l × k matrices. Observe that

E(Nf ∗
2,n,∞(k)f ∗

2,n,∞(l)) = tr(Γ∗
l,k(0)Γ

−1(k)Γk,l(0)Γ
−1(l))

N −
√
n

N
σ2.

Then, by the Woodbury matrix identity and partitioned matrix inversion formula, we have

tr(Γ∗
l,k(0)Γ

−1(k)Γk,l(0)Γ
−1(l))

= tr([Γ∗
l,k(0)− Γl,k(0)]Γ

−1(k)Γk,l(0)Γ
−1(l)) + tr(Γl,k(0)Γ

−1(k)Γk,l(0)Γ
−1(l))

= tr([Γ∗
l,k(0)− Γl,k(0)]Γ

−1(k)Γk,l(0)Γ
−1(l)) + min(k, l)

≤ C∥Γ−1(k)∥tr(Γ∗(k)− Γ(k)) + min(k, l)

≤ C
∞∑

j=
√
n−Kn+1

jb2j +min(k, l)

6



Then, it follows that

|E(Nf ∗
2,n,∞(k)f ∗

2,n,∞(l))−min(k, l)σ2| ≤ C
(∑∞

j=
√
n−Kn+1 |jbj|2√
n−Kn

+

√
nKn

n−Kn

)
. (S.11)

Therefore, (A.2) holds by (S.11), (2.3), and Assumption 4. This completes the proof.

Proof of Lemma 4. Define

f ⋆
2,n(k − d) =

{
z⋆

′
n (k − d)√

N
Γ−1(k − d)

1√
N

n−
√
n−1∑

j=Kn

zj(k − d)ϵj+1

}
1(k > d),

z⋆n(k) =

(√
n/2−Kn∑
j=0

bjϵn−j, ...,

√
n/2−Kn∑
j=0

bjϵn−k+1−j

)′

, k ≥ 1,

S∗
n(k − d) =

√
n/2∑
i=1

(ai − ai(k − d))z∗∗n+1−i, z∗∗n+1−i =

√
n/2∑

j=0

bjϵn+1−i−j.

Note that for all 1 ≤ u, v ≤ Kn − d, z⋆n(u) is independent from (Sn(v) − S∗
n(v)) and∑n−

√
n−1

j=Kn
zj(v)ϵj+1. Also,

∑n−
√
n−1

j=Kn
zj(u)ϵj+1 is independent from (S∗

n(v), z
⋆
n(v)). Therefore,

we have

E
[
(

Kn∑
k=max{1,d}

wkf
⋆
2,n(k − d))(

Kn∑
k=max{1,d}

wk[Sn(k − d)− S∗
n(k − d)])

]
= 0,

and

E
[
(

Kn∑
k=max{1,d}

wkf
⋆
2,n(k − d))(

Kn∑
k=max{1,d}

wkS
∗
n(k − d))

]
= 0.

Then, it follows that

E
[
(

Kn∑
k=max{1,d}

wkf2,n(k − d))(
Kn∑

k=max{1,d}

wkSn(k − d))
]

= E
[
(

Kn∑
k=max{1,d}

wk[f2,n(k − d)− f ⋆
2,n(k − d)])(

Kn∑
k=max{1,d}

wkSn(k − d))
]

+ E
[
(

Kn∑
k=max{1,d}

wkf
⋆
2,n(k − d))(

Kn∑
k=max{1,d}

wk[Sn(k − d)− S∗
n(k − d)])

]
+ E

[
(

Kn∑
k=max{1,d}

wkf
⋆
2,n(k − d))(

Kn∑
k=max{1,d}

wkS
∗
n(k − d))

]

7



= E
[
(

Kn∑
k=max{1,d}

wk[f2,n(k − d)− f ⋆
2,n(k − d)])(

Kn∑
k=max{1,d}

wkSn(k − d))
]
.

Therefore, we have

sup
w∈Hd

n

∣∣∣∣E
[
(
∑Kn

k=max{1,d}wkf2,n(k − d))(
∑Kn

k=max{1,d}wkSn(k − d))
]

Ld
n(w)

∣∣∣∣
≤ sup

w∈Hd
n

∣∣∣∣E
[
(
∑Kn

k=max{1,d}wk[f2,n(k − d)− f ⋆
2,n(k − d)])(

∑Kn

k=max{1,d}wkSn(k − d))
]

Ld
n(w)

∣∣∣∣
≤ sup

w∈Hd
n

E1/2
[∑Kn

k=max{1,d}wk(f2,n(k − d)− f ⋆
2,n(k − d))

]2√
Ld
n(w)

× sup
w∈Hd

n

E1/2
[∑Kn

k=max{1,d}wkSn(k − d)
]2√

Ld
n(w)

≤ C
{ ∞∑

j=
√
n/2−Kn+1

|jbj|2 +
√

K3
n

N

}1/2
, (S.12)

where the last inequality is insured by Lemma 1 and with the same argument as Lemma 2

(i). Therefore, (A.3) holds by (S.12), (2.3), and Assumption 4. This completes the proof.

Proof of Lemma 5. Let

(I) = sup
w∈Hd

n

∣∣∣∣E
[∑Kn

k=max{1,d}wkf1,n(d) +
∑Kn

k=max{1,d}wkf2,n(k − d) +
∑Kn

k=max{1,d}wkSn(k − d)
]2

Ld
n(w)

−1

∣∣∣∣.
Then, it follows that

(I) ≤ (II) + (III) + (IV ) + (V ) + (V I) + (V II), (S.13)

where

(II) = sup
w∈Hd

n

∣∣∣∣E(f1,n(d))2 − d(d+1)σ2

N

Ld
n(w)

∣∣∣∣,
(III) = sup

w∈Hd
n

∣∣∣∣E(
∑Kn

k=max{1,d}wkf2,n(k − d))2 − σ2
∑

max{1,d}≤i,j≤Kn
wiwj(min{i, j} − d)

Ld
n(w)

∣∣∣∣,
(IV ) = sup

w∈Hd
n

∣∣∣∣E(
∑Kn

k=max{1,d}wkSn(k − d))2 −
∑

max{1,d}≤i,j≤Kn
wiwj∥a− a(max{i, j} − d)∥2z

Ld
n(w)

∣∣∣∣,
(V ) = sup

w∈Hd
n

∣∣∣∣2E
[
f1,n(d)

∑Kn

k=max{1,d}wkf2,n(k − d)
]

Ld
n(w)

∣∣∣∣,
(V I) = sup

w∈Hd
n

∣∣∣∣2E
[
f1,n(d)

∑Kn

k=max{1,d}wkSn(k − d)
]

Ld
n(w)

∣∣∣∣,
8



(V II) = sup
w∈Hd

n

∣∣∣∣2E
[∑Kn

k=max{1,d}wkf2,n(k − d)
∑Kn

k=max{1,d}wkSn(k − d)
]

Ld
n(w)

∣∣∣∣.
By Lemma 2 of Ing et al. (2010), we have limn→∞(II) = 0. By Lemmas 2 and 3, we

have limn→∞(III) = 0. By Lemma 1, we have limn→∞(IV ) = 0. By Lemma 4, we have

limn→∞(V II) = 0. Following a similar argument to the proofs of (B.40) and (B.41) in Ing

et al. (2010) and Hölder’s inequality, we have

lim
n→∞

sup
w∈Hd

n

E

∣∣∣∣f1,n(d)
∑Kn

k=max{1,d}wkf2,n(k − d)− f ∗
1,n(d)

∑Kn

k=max{1,d}wkf
∗
2,n(k − d)

Ld
n(w)

∣∣∣∣ = 0

and

lim
n→∞

sup
w∈Hd

n

E

∣∣∣∣f1,n(d)
∑Kn

k=max{1,d}wkSn(k − d)− f ∗
1,n(d)

∑Kn

k=max{1,d}wkS
∗
n(k − d)

Ld
n(w)

∣∣∣∣ = 0.

Then, by the facts that for all d ≤ k ≤ Kn, E(f
∗
1,n(d)f

∗
2,n(k−d)) = E(f ∗

1,n(d)S
∗
n(k−d)) = 0, we

have limn→∞(V ) = 0 and limn→∞(V I) = 0. Therefore, (A.4) holds by (S.13) and the fact that

limn→∞ ((II) + (III) + (IV ) + (V ) + (V I) + (V II)) = 0. This completes the proof.

Proof of Lemma 6. For any w ∈ Hd
n, Bn(k−d) := B1n(k, d)+B2n(k−d), where B1n(k, d)

and B2n(k − d) are defined after (A.1). Observe that

E
[ Kn∑
k=max{1,d}

wk(fn(k) + Sn(k − d))
]2

= E
[ Kn∑
k=max{1,d}

wk(fn(k)−Bn(k − d))
]2

+ E
[ Kn∑
k=max{1,d}

wk(Bn(k − d) + Sn(k − d))
]2

+ E
[ Kn∑
k=max{1,d}

wk(fn(k)−Bn(k − d))
][ Kn∑

k=max{1,d}

wk(Bn(k − d) + Sn(k − d))
]

= (I) + (II) + (III). (S.14)

By Lemmas B1, B3, B4, B6, Hölder’s inequality, Theorem 1 (ii), (A.26), and (A.28) of Ing

et al. (2010), we have

(I)

Ld
n(w)

≤
∑Kn

k=max{1,d}wkE
[
fn(k)−Bn(k − d)

]2
Ld
n(w)

≤
C
∑Kn

k=max{1,d}wkk
3

N2Ld
n(w)

≤ C

NLd
n(w)

K3
n

N
.

(S.15)

For (II), we have

(II) = E
[ Kn∑
k=max{1,d}

wk(Bn(k − d) + Sn(k − d))
]2
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= E
[ Kn∑
k=max{1,d}

wk(Bn(k − d)− Fn(k − d))
]2

+ E
[ Kn∑
k=max{1,d}

wk(Bn(k)− Fn(k − d))
][ Kn∑

k=max{1,d}

wk(Fn(k − d) + Sn(k − d))
]

+ E
[ Kn∑
k=max{1,d}

wk(Fn(k, d) + Sn(k − d))
]2

= (IV ) + (V ) + (V I). (S.16)

Since

(IV ) ≤
Kn∑

k=max{1,d}

wkE
[
f1,n(d)−B1n(k, d)

]2
+

Kn∑
k=max{1,d}

wkE
[
f2,n(k − d)−B2n(k, d)

]2
,

by (B.43)-(B.45) of Ing et al. (2010), we have

(IV )

Ld
n(w)

≤ C

NLd
n(w)

. (S.17)

Also, by the Cauchy-Schwarz inequality, with sufficiently large N , and Lemma 5, we have

(V )

Ld
n(w)

≤ C

(NLd
n(w))1/2

. (S.18)

Next, by the Cauchy-Schwarz inequality, the above decomposition of (II), and similar argu-

ments for (V ), we have

(III)

Ld
n(w)

≤
(

C

NLd
n(w)

K3
n

N

)1/2

. (S.19)

Then, it follows that

sup
w∈Hd

n

∣∣∣∣E(fn(k, d), Sn(k − d),w)− E(Fn(k, d), Sn(k − d),w)

Ld
n(w)

∣∣∣∣
= sup

w∈Hd
n

∣∣∣∣E(fn(k, d), Sn(k − d),w)− (V I)

Ld
n(w)

∣∣∣∣
≤ sup

w∈Hd
n

∣∣∣∣(I) + (II) + (III) + (IV ) + (V )

Ld
n(w)

∣∣∣∣, (S.20)

Therefore, (A.5) holds by (S.14)-(S.20). This completes the proof.

Proof of Lemma 7. To simplify the notation, we define

A :=
∑

1≤i,j≤d−1

wiwj min(i, j), Ad :=
∑

1≤i,j≤d−1

wiwjd, B :=
∑

d≤i,j≤Kn

wiwj min(i, j),
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C :=
∑

1≤i,j≤d−1

wiwj max(i, j), D :=
∑

d≤i,j≤Kn

wiwj max(i, j), E :=
∑

1≤i,j≤d−1

wiwjσ̂
2(max(i, j)),

Ed :=
∑

1≤i,j≤d−1

wiwjσ̂
2(d), F :=

∑
d≤i,j≤Kn

wiwjσ̂
2(max(i, j)),

where σ̂2(k) = N−1
∑n−1

t=Kn
(yt+1 − ŷt+1(k))

2 = N−1
∑n−1

t=Kn
(yt+1 + y′

tân(k))
2.

For (i), by Lemma 4.1 and Eq. (4.6) of Ing et al. (2012), for any k → ∞, σ̂2(k) is a

consistent estimator of σ2. Without loss of generality, let σ̌2 = σ̂2(Kn). When ŵMMA,k > 0,

it means that there exists some w = (w1, ..., wk, ..., wKn) ∈ Hn such that ŵMMA = w, wk >

0, for any 1 ≤ k < d. Then, it follows that

Pr(ŵMMA,k > 0, 1 ≤ k < d)

= Pr(wk > 0, 1 ≤ k < d)

= Pr
(
N(E + F ) + (A+B + C +D)σ̌2 ≤ N(Ed + F ) + (Ad +B + Ad +D)σ̌2

)
= Pr

(
N [E − Ed] ≤ [(Ad − A) + (Ad − C)]σ̌2

)
≤ Pr

(
N [E − Ed] ≤ 2Adσ̌

2
)

≤ Pr
(
N [

∑
1≤i,j≤d−1

wiwj(σ̂
2(d− 1)− σ̂2(d))] ≤ 2

∑
1≤i,j≤d−1

wiwj d σ̌
2
)

≤ Pr
(
N [σ̂2(d− 1)− σ̂2(d)] ≤ 2d σ̌2

)
≤ Pr

(
N [σ̂2(d− 1)− σ̂2(d)] ≤ 2d (σ2(Kn) + ϵ)

)
+ Pr

(
|σ̌2 − σ2(Kn)| > ϵ

)
, (S.21)

where the second and third inequalities hold by the fact that σ̂2(k) ≤ σ̂2(l) for all l < k,∑Kn

k=1wk = 1, and
∑

1≤i,j≤d−1wiwjσ̂
2(d − 1) ≤ E. Therefore, Lemma 7 (i) holds by (4.30)

and Theorem 4.5 of Ing et al. (2012), and (S.21).

For (ii), when ŵSMA,k > 0, it means that there exists some w = (w1, ..., wk, ..., wKn) ∈ Hn

such that ŵSMA = w, wk > 0, for any 1 ≤ k < d. Then, it follows that

Pr(ŵSMA,k > 0, 1 ≤ k < d)

= Pr(wk > 0, 1 ≤ k < d)

= Pr
(
[N + A+B + C +D]× [E + F ] ≤ [N + Ad +B + Ad +D]× [Ed + F ]

)
= Pr

(
N [E − Ed] ≤ [(Ad − A) + (Ad − C)][Ed + F ] + [A+B + C +D][Ed − E]

)
≤ Pr

(
N [E − Ed] ≤ [(Ad − A) + (Ad − C)][Ed + F ]

)
≤ Pr

(
N [E − Ed] ≤ 2Adσ̂

2(d)
)

≤ Pr
(
N [

∑
1≤i,j≤d−1

wiwj(σ̂
2(d− 1)− σ̂2(d))] ≤ 2

∑
1≤i,j≤d−1

wiwj d σ̂
2(d)

)
≤ Pr

(
N [σ̂2(d− 1)− σ̂2(d)] ≤ 2d σ̂2(d)

)
, (S.22)
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where the first to third inequalities hold by the fact that σ̂2(k) ≤ σ̂2(l) for all l < k,∑Kn

k=1wk = 1, and
∑

1≤i,j≤d−1wiwjσ̂
2(d − 1) ≤ E. Therefore, Lemma 7 (ii) holds by (4.30)

and Theorem 4.5 of Ing et al. (2012), and (S.22).

For (iii), when ŵAMA,k > 0, it means that there exists some w = (w1, ..., wk, ..., wKn) ∈ Hn

such that ŵAMA = w, wk > 0, for any 1 ≤ k < d. Then, it follows that

Pr(ŵAMA,k > 0, 1 ≤ k < d)

= Pr(wk > 0, 1 ≤ k < d)

= Pr
(
log(E + F ) +

(A+B + C +D)

N
≤ log(Ed + F ) +

(Ad +B + Ad +D)

N

)
= Pr

(
log(E + F )− log(Ed + F ) ≤ [(Ad − A) + (Ad − C)]

N

)
≤ Pr

(
log(

E + F

Ed + F
) ≤ 2d

N

)
= Pr

( E + F

Ed + F
≤ exp(

2d

N
)
)

= Pr
( E − Ed

Ed + F
≤ exp(

2d

N
)− 1

)
≤ Pr

( E − Ed

Ed + F
≤ 2d

N − 2d

)
= Pr

(
(N − 2d)(E − Ed) ≤ 2d(Ed + F )

)
≤ Pr

(
(N − 2d)[

∑
1≤i,j≤d−1

wiwj(σ̂
2(d− 1)− σ̂2(d))] ≤ 2d σ̂2(d)

)
≤ Pr

(
(N − 2d)[σ̂2(d− 1)− σ̂2(d)] ≤ C σ̂2(d)

)
, (S.23)

where the second inequality holds by the fact that exp(x) − 1 ≤ x
1−x

if 0 < x < 1, and the

last two inequalities hold by the fact that σ̂2(k) ≤ σ̂2(l) for all l < k,
∑

1≤i,j≤d−1wiwj > 0,

Ed + F ≤ σ̂2(d), and
∑

1≤i,j≤d−1wiwjσ̂
2(d − 1) ≤ E. Therefore, Lemma 7 (iii) holds by

(4.30) and Theorem 4.5 of Ing et al. (2012), and (S.23). This completes the proof.

Proof of Lemma 8. Note that ŵd
S̃n

= argminw∈Hd
n
S̃n(w), Ld

n(w
∗
n) = infw∈Hd

n
Ld
n(w), and

g(·) is an increasing function. Then, it follows that

0 ≥ g(S̃n(ŵ
d
S̃n
))− g(S̃n(w

∗
n)) = Cn(ŵ

d
S̃n
)−Gn(ŵ

d
S̃n
)− (Cn(w

∗
n)−Gn(w

∗
n))

= NLd
n(ŵ

d
S̃n
)−NLd

n(w
∗
n)− Vn(ŵ

d
S̃n
,w∗

n)− (Gn(ŵ
d
S̃n
)−Gn(w

∗
n))),

(Gn(ŵ
d
S̃n
)−Gn(w

∗
n)) + Vn(ŵ

d
S̃n
,w∗

n) ≥ NLd
n(ŵ

d
S̃n
)−NLn(w

∗
n) ≥ 0,

and

sup
w∈Hd

n

∣∣∣Gn(w)−Gn(w
∗
n))

NLd
n(w)

∣∣∣+ sup
w∈Hd

n

∣∣∣Vn(w,w∗
n)

NLd
n(w)

∣∣∣ ≥ Vn(ŵ
d
S̃n
,w∗

n)

NLd
n(ŵ

d
S̃n
)

≥ 1− Ld
n(w

∗
n)

Ld
n(ŵ

d
S̃n
)
≥ 0,

12



Therefore, by (A.6) and (B.6), we have limn→∞ Ld
n(w

∗
n)/L

d
n(ŵ

d
S̃n
)

p−→ 1. This completes the

proof.

S.2 Additional Simulation Results

Figures S.1-4 present the relative MSPEs of the various estimates for d = 0 and d = 2 in

both algebraic-decay and exponential-decay cases. The results show that the MMA, AMA,

and SMA have similar MSPEs and perform quite well in both cases. Overall, the ranking

of different estimators in d = 0 and d = 2 is quite similar to that in d = 1. Figures S.5-8

examine the effect of the sample size on the MSPE in both algebraic-decay and exponential-

decay cases. Like the results in d = 1, the AMA, MMA, and SMA have much lower MSPEs

than those of the AIC, Cp, and SIC in the algebraic-decay case, but the MSPEs of AIC, Cp,

and SIC are approaching those of AMA, MMA, and SMA in the exponential-decay case.
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Figure S.1: Relative MSPEs for d = 0 in the algebraic-decay case
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Figure S.2: Relative MSPEs for d = 0 in the exponential-decay case
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Figure S.3: Relative MSPEs for d = 2 in the algebraic-decay case
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Figure S.4: Relative MSPEs for d = 2 in the exponential-decay case
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Figure S.5: Relative MSPEs for the algebraic-decay case, d = 0, various sample sizes
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Figure S.6: Relative MSPEs for the exponential-decay case, d = 0, various sample sizes
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Figure S.7: Relative MSPEs for the algebraic-decay case, d = 2, various sample sizes
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Figure S.8: Relative MSPEs for the exponential-decay case, d = 2, various sample sizes
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